scispace - formally typeset

Journal ArticleDOI

Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico

24 Feb 2010-Biofouling (Taylor & Francis)-Vol. 26, Iss: 4, pp 399-409

TL;DR: The structural characterization and species composition of biofilms from the walls of one of the buildings at the archaeological site of Palenque, Mexico, are reported and the implications for the development and permanence of species capable of withstanding temporal heterogeneity in and on El Palacio are discussed.

AbstractSurfaces of buildings at the archaeological site of Palenque, Mexico, are colonized by cyanobacteria that form biofilms, which in turn cause aesthetic and structural damage. The structural characterization and species composition of biofilms from the walls of one of these buildings, El Palacio, are reported. The distribution of photosynthetic microorganisms in the biofilms, their relationship with the colonized substratum, and the three-dimensional structure of the biofilms were studied by image analysis. The differences between local seasonal microenvironments at the Palenque site, the bioreceptivity of stone and the relationship between biofilms and their substrata are described. The implications for the development and permanence of species capable of withstanding temporal heterogeneity in and on El Palacio, mainly due to alternating wet and dry seasons, are discussed. Knowledge on how different biofilms contribute to biodegradation or bioprotection of the substratum can be used to develop maintenance ...

...read more

Content maybe subject to copyright    Report

SUPPLEMENTARY MATERIAL
Table 2. Species identified in sampling sites at El Palacio (Palenque).
Taxa Size Location Figure
Cyanobacteria
Chroococcales
Synechococcaceae
Aphanothecoideae
Aphanothece castagnei
(Bre
´
bisson) Rabenhorst
Cells 4.1-(5.3)76.6 mm wide and
2.6-(4.9)77.2 mm long
I
III
IV
Gloeothece cf. palea (Ku
¨
tz.)
Rabenhorst
Cells 2.3-(2.4)72.6 mm wide,
4.6-(7.9)711.2 mm with sheath and 2.6-
(4.9)77.26 long,
6.6-(9.2)711.8 mm with sheath.
I
II
III
IV
Microcystaceae
Gloeocapsa calcicola Gardner Cells 2.6-(3.3)74.2 mm wide and
9.2-(13.8)718.5 mm with sheath
I
II
III
IV
Gloeocapsa quaternata Ku
¨
tzing Cells 2.3-(2.9)73.5 mm wide and
3.2-(5.3)77.5 mm long. With sheath 5-
(5.7)76.5 mm wide and
6-(7.2)78.5 mm long
I
II
III
IV
Chroococcaceae
Asterocapsa divina Koma
´
rek Colonies 13.3-(63.9)7114.5 mm wide. Cells
6.6-(9.9)713.3 mm wide and 9.9-
(12.4)714.9 mm long. Cells with sheath
9.9-(25.7)741.5 mm wide
II
III
IV
Chroococcus cf. schizodermaticus
W. et G.S. West
Colonies de 7-(13.5)720 mm wide. Cells 4-
(8.5)713 mm wide and
5-(10.5)716 mm long
I
IV
Oscillatoriales
Pseudoanabaenaceae
Leptolyngbyoideae
Leptolyngbya cf. compacta
(Ku
¨
tzing ex Hansgirg) Koma
´
rek
et Anagnostidis
Filament diameter. Trichomes
1.3-(1.6)72 mm wide and cells
1.9-(2.6)73.3 mm long, sheath
1.5-(1.7)72 mm thick
I
IV
Schizotrichaceae
Schizothrix bosniaca (Hansgirg)
Geitler
Trichomes 2.4-(4.1)75.7 mm wide, cells 3.7-
(7.3)711 mm long
I
IV
(continued)

SUPPLEMENTARY MATERIAL
Table 2. (Continued).
Taxa Size Location Figure
Nostocales
Scytonemataceae
Scytonema guyanense (Mont.)
Bornet et Flahaut
Cells 4.9-(9.5)714.1 mm wide and
3.4714.9 mm long. Heterocysts 3.4-
(9.2)714.9 mm wide and
5.5-(10.8)716.1 mm long.
Sheath 8.3-(10.5)712.7 mm
I
IV
Nostocaceae
Nostoc commune Vaucher ex
Bornet et Flahaut
Cells 5.8-(6.6)77.4 mm wide and
4.9-(7.4)79.9 mm long. Heterocysts 6.6-
(7.4)78.3 mm wide and 7.4-(7.8)78.3 mm
long
I
IV
Chlorophyta
Trentepohliophyceae
Trentepohliales
Trentepohlia aurea (Linn) Martius Young cells: 3.9-(16.7)729.5 mm wide and
3.9-(13.6)723.2 mm long. Mature cells:
9.9-(18.2)726.5 mm wide and 18.2-
(35.2)752.1 mm long. Sporangia: 15.8-
(22.1)728. 2 mm wide and 17.8-
(25.5)733.2 mm long
III
IV
Citations
More filters

Journal ArticleDOI
TL;DR: It is suggested that a standardized laboratory protocol for evaluating stone bioreceptivity and definition of a stone biOREceptivity index are required to enable creation of a database on the primary bioreCEPTivity of stone materials.
Abstract: In 1995, Guillitte defined bioreceptivity, a new term in ecology, as the ability of a material to be colonized by living organisms. Information about the bioreceptivity of stone is of great importance since it will help us to understand the material properties which influence the development of biological colonization in the built environment, and will also provide useful information as regards selecting stones for the conservation of heritage monuments and construction of new buildings. Studies of the bioreceptivity of stone materials are reviewed here with the aim of providing a clear set of conclusions on the topic. Definitions of bioreceptivity are given, stone bioreceptivity experiments are described, and finally the stone properties related to bioreceptivity are discussed. We suggest that a standardized laboratory protocol for evaluating stone bioreceptivity and definition of a stone bioreceptivity index are required to enable creation of a database on the primary bioreceptivity of stone materials.

174 citations


Cites background from "Cyanobacteria-containing biofilms f..."

  • ...The state of conservation of building materials and their maintenance seems to also affect bioreceptivity (Ortega-Calvo et al., 1995; Ramirez et al., 2010; Jim and Chen, 2011)....

    [...]

  • ...Ramirez et al. (2010) reported that strong seasonal changes in rainfall and relative humidity defined a strict cyanobacterial growth sequence on a Mayanmonument in Palenque (Mexico), although bioreceptivity was also an important factor in the development of microorganisms....

    [...]


Journal ArticleDOI
Abstract: Since ancient time, magnificence and beauty have been the goals of architecture. Artists and architects used high strength, durable and beautiful stones like marble and limestone for the construction of monuments like Taj Mahal, Milan Cathedral, Roman Catacombs and Necropolis in Rome etc. These historic monuments are exposed to open air which allows the invading army of algae, cyanobacteria, fungi etc. to easily access them. The invasion of microorganisms and their subsequent interaction with mineral matrix of the stone substrate under varied environment conditions fosters deterioration of stones by multiple mechanisms resulting in loss of strength, durability, and aesthetic appearance. The review details about the major routes and mechanisms which led to biodeterioration, discusses current remedial methodologies and suggests future directions.

91 citations


Cites background from "Cyanobacteria-containing biofilms f..."

  • ...Algae Aesthetic and chemical deterioration Biofilm formation; color alteration; black crust formation; [18,21,31,32]...

    [...]

  • ...1 Photoautotrophs Cyanobacteria Aesthetic and chemical deterioration Biofilm formation; color alteration; patina formation; crust formation; bioweathering as a consequences of calcium uptake, precipitation of calcium salt and formation of secondary minerals [17-23]...

    [...]


Journal ArticleDOI
TL;DR: The secretion of protective pigments in the polysaccharide layers, namely mycosporine amino acid-like substances (MAAs) and scytonemins, under exposure to UV radiation showed how the acclimation response contributes to the persistence of cyanobacteria on exposed lithoid surfaces in tropical areas.
Abstract: Three coccoid and two filamentous cyanobacterial strains were isolated from phototrophic biofilms exposed to intense solar radiation on lithic surfaces of the Parasurameswar Temple and Khandagiri caves, located in Orissa State, India. Based on to their morphological features, the three coccoid strains were assigned to the genera Gloeocapsosis and Gloeocapsa, while the two filamentous strains were assigned to the genera Leptolyngbya and Plectonema. Eleven to 12 neutral and acidic sugars were detected in the slime secreted by the five strains. The secretions showed a high affinity for bivalent metal cations, suggesting their ability to actively contribute to weakening the mineral substrata. The secretion of protective pigments in the polysaccharide layers, namely mycosporine amino acid-like substances (MAAs) and scytonemins, under exposure to UV radiation showed how the acclimation response contributes to the persistence of cyanobacteria on exposed lithoid surfaces in tropical areas.

80 citations


Cites background from "Cyanobacteria-containing biofilms f..."

  • ...Biofilms growing on lithic surfaces of monuments have been intensively studied over recent decades since there is growing concern for the preservation of cultural heritage (de la Torre et al. 1993; Gaylarde and Morton 1999; Ramirez et al. 2010)....

    [...]


Book ChapterDOI
01 Jan 2012
Abstract: Biofilm-forming cyanobacteria are widespread inhabitants of exposed stones in archaeological and historical sites and caves. Outdoors, these phototrophic biofilms are adapted to all types of stress imposed by growth at the air-rock interface and have developed the capacity to tolerate excess solar radiation, extreme temperatures and desiccation at different latitudes. Indoors, the typology of the cave or the characteristics of confined environments strongly selects the microbial community according to light availability and air humidity. Interactions of cyanobacteria with rocky substrata serving as the source of mineral nutrients are based on the adhesion mechanisms and metabolic processes that allow the development of these biofilms. Both types of subaerial phototrophic community include cyanobacteria that support associated populations of heterotrophic populations of mostly very specialized species. The distribution of particular cyanobacterial taxa on monuments in urban or agricultural areas is related mostly to climatic conditions and the position and orientation of the hard surface with respect to water availability and air circulation.

67 citations


Cites background from "Cyanobacteria-containing biofilms f..."

  • ...Ramírez et al. ( 2010 ) , who studied buildings at Palenque, another archaeological site in Mexico, described the three-dimensional structure and distribution on rock, stucco and concrete of photosynthetic microorganisms in the bio fi lms dominated by the desiccation-tolerant Scytonema guyanense…...

    [...]


Journal ArticleDOI
TL;DR: Light forest cover seems beneficial for the conservation of the Angkor monuments since it reduces evaporation processes, but further studies should be carried out so as to find an optimal balance between contrasting factors.
Abstract: The biological colonization present on the temples of the UNESCO World Heritage site of Angkor is wide and relevant, but a debate on its biodeteriorative and bioprotective effects is now developing. We investigated the biological patterns observed on two temples (Ta Nei and Ta Keo) exposed to different microclimatic conditions, in order to assess the damage caused by the communities present on the stone. We analyzed the penetration (depth and spread) into the stone, and the degree of decohesion of seven communities (green algae, cyanobacteria, lichens and mosses). The microscopic analyses highlighted a clear interaction between organism and stone, displaying a trend of increasing harmfulness from the community of the green algae (Trentepohlia) up to the moss communities. All the lichen communities show biodeterioration abilities: the Pyxine community seems more aggressive than the Lepraria and Cryptothecia communities, and more also than the cyanobacterial communities. The positive effects of the lichen cover in reducing dangerous evaporation processes cannot outweigh the negative effects of their hyphal penetration. Light forest cover seems beneficial for the conservation of the Angkor monuments since it reduces evaporation processes, but further studies should be carried out so as to find an optimal balance between contrasting factors.

55 citations


References
More filters

Journal ArticleDOI
Abstract: The alteration and weathering of stone is basically determined by natural and anthropogenic impacts influencing various physical, chemical and biological damage factors at the object site. Whether as direct or catalytically enhancing factor, the biodeterioration of stone is coupled with nearly all environmentally induced degradation processes: the presence of the one makes deterioration by the other all the more effective. The bioreceptivity of stone is described by its structure and chemical composition, while the intensity of the microbial contamination is determined by the referring climatic conditions and the anthropogenic euthrophication of the atmosphere. The microflora improves the nutrient and moisture-restricted growth conditions on building stones by the formation of surface-covering biofilms. Besides the aesthetical impairment caused by the coloured biopatina, the biofouling effect promotes even “abiotic” deterioration processes due to the alteration of the material structure as well as their thermo-hygric properties; in addition, mechanical pressure due to the shrinking and swelling of the colloidal biofilms might cause a further weakening of the mineral lattice. Acidolytic and oxido-reductive biocorrosion processes complete the biodeteriorating attack of stone acting as a preliminary precursor for the latter formation of detrimental crusts. Suitable and reliable methods for the detection of biodeterioration processes are available, but only the interdisciplinary diagnosis and evaluation of the entire decay process of stone allows the formulation of adaequate countermeasure strategies. In case the significance of biodeterioration impacts is proven, the possible effects of the microbial contamination on cleaning procedures, protective treatments as well as biocidal applications has to be considered. This paper will give a comprehensive overview to the biodeterioration of stone and stresses the practical relevance for the conservation.

767 citations


"Cyanobacteria-containing biofilms f..." refers background in this paper

  • ...1991; Kumar and Kumar 1999), or favor the acceleration of weathering processes (Warscheid and Braams 2000) as observed in Sites II and III of El Palacio....

    [...]

  • ...artificial substrata can become colonized by communities of microorganisms enclosed in exopolysaccharide matrices called biofilms (Warscheid and Braams 2000; Di Pippo et al. 2009)....

    [...]

  • ...Under suitable conditions, both natural and artificial substrata can become colonized by communities of microorganisms enclosed in exopolysaccharide matrices called biofilms (Warscheid and Braams 2000; Di Pippo et al. 2009)....

    [...]

  • ...…can cause discoloration of stone surfaces (Hernández-Mariné et al. 2003) and mechanical and biochemical deterioration (Ortega-Calvo et al. 1991; Kumar and Kumar 1999), or favor the acceleration of weathering processes (Warscheid and Braams 2000) as observed in Sites II and III of El Palacio....

    [...]


Journal ArticleDOI
TL;DR: Subaerial biofilm metabolic activity centres on retention of water, protecting the cells from fluctuating environmental conditions and solar radiation as well as prolonging their vegetative life, which manifests itself as bio-weathering of rock surfaces.
Abstract: Biofilms are interface micro-habitats formed by microbes that differ markedly from those of the ambient environment. The term 'subaerial biofilm' (SAB) was coined for microbial communities that develop on solid mineral surfaces exposed to the atmosphere. Subaerial biofilms are ubiquitous, self-sufficient, miniature microbial ecosystems that are found on buildings, bare rocks in deserts, mountains, and at all latitudes where direct contact with the atmosphere and solar radiation occurs. Subaerial biofilms on exposed terrestrial surfaces are characterized by patchy growth that is dominated by associations of fungi, algae, cyanobacteria and heterotrophic bacteria. Inherent subaerial settlers include specialized actinobacteria (e.g. Geodermatophilus), cyanobacteria and microcolonial fungi. Individuals within SAB communities avoid sexual reproduction, but cooperate extensively with one another especially to avoid loss of energy and nutrients. Subaerial biofilm metabolic activity centres on retention of water, protecting the cells from fluctuating environmental conditions and solar radiation as well as prolonging their vegetative life. Atmospheric aerosols, gases and propagatory particles serve as sources of nutrients and inoculum for these open communities. Subaerial biofilms induce chemical and physical changes to rock materials, and they penetrate the mineral substrate contributing to rock and mineral decay, which manifests itself as bio-weathering of rock surfaces. Given their characteristic slow and sensitive growth, SAB may also serve as bioindicators of atmospheric and/or climate change.

451 citations


BookDOI
01 Jan 2014

412 citations


Journal ArticleDOI
Malcolm Potts1
TL;DR: Drying of cells leads to damage resulting from crowding of cytoplasmic components, condensation of the nucleoid, increases in the Tm of membrane phase transitions, and imposition of stress upon cell walls, which restricts many organisms to aqueous environments, some, including many cyanobacteria, can tolerate the air-dried state for prolonged periods.
Abstract: Drying of cells leads to damage resulting from crowding of cytoplasmic components, condensation of the nucleoid, increases in the Tm of membrane phase transitions, and imposition of stress upon cell walls. Prolonged desiccation leads to oxidation of proteins, DNA and membrane components through metal-dependent Fenton reactions, while Maillard reactions generate cross-linked products between the carbonyl groups of reducing sugars and the primary amines of nucleic acids and proteins. Although such damage restricts many organisms to aqueous environments, some, including many cyanobacteria, can tolerate the air-dried state for prolonged periods. Cyanobacteria in the Tintenstrich communities of exposed rock faces, Microcoleus and Lyngbya spp. in intertidal mats, chasmoendolithic Chroococcidiopsis spp. in the rocks of hot and cold deserts, and terrestrial epilithic crusts of Tolypothrix and Nostoc are examples that show a marked capacity to withstand the removal of their cellular water. For Nostoc commune, the ...

291 citations


"Cyanobacteria-containing biofilms f..." refers background in this paper

  • ...Survival strategies related to desiccation are well known (Potts 1999; Wynn-Williams 2000), and include the use of water retained within the substrata and the formation of protective, droughtresistant compounds (Gorbushina and Krumbein 2000)....

    [...]

  • ...During the dry season, in which conditions were unfavorable, phototrophic microorganisms were hidden under the remains from the previous wet season and were protected by their respective resilience strategies (Potts 1999)....

    [...]


Journal ArticleDOI
TL;DR: Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments.
Abstract: We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4–9.4 mmol O2·m−2·h−1) and dark respiration (0.81–3.1 mmol O−2·m−2·h−1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2–3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.

290 citations


"Cyanobacteria-containing biofilms f..." refers result in this paper

  • ...These results are comparable with those of extreme habitats ranging from Antarctic communities (Büdel et al. 2008) to deserts (Garcia-Pichel and Belnap 1996; Wynn-Williams 2000)....

    [...]