scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas

TL;DR: CYP1B1-null mice, created by targeted gene disruption in embryonic stem cells, were born at the expected frequency from heterozygous matings with no observable phenotype as discussed by the authors.
Abstract: CYP1B1-null mice, created by targeted gene disruption in embryonic stem cells, were born at the expected frequency from heterozygous matings with no observable phenotype, thus establishing that CYP1B1 is not required for mouse development. CYP1B1 was not detectable in cultured embryonic fibroblast (EF) or in different tissues, such as lung, of the CYP1B1-null mouse treated with the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin whereas the equivalent wild-type EF cells express basal and substantial inducible CYP1B1 and lung expresses inducible CYP1B1. CYP1A1 is induced to far higher levels than CYP1B1 in liver, kidney, and lung in wild-type mice and is induced to a similar extent in CYP1B1-null mice. 7,12-dimethylbenz[a]anthracene (DMBA) was toxic in wild-type EFs that express CYP1B1 but not CYP1A1. These cells effectively metabolized DMBA, consistent with CYP1B1 involvement in producing the procarcinogenic 3,4-dihydrodiol as a major metabolite, whereas CYP1B1-null EF showed no significant metabolism and were resistant to DMBA-mediated toxicity. When wild-type mice were administered high levels of DMBA intragastrically, 70% developed highly malignant lymphomas whereas only 7.5% of CYP1B1-null mice had lymphomas. Skin hyperplasia and tumors were also more frequent in wild-type mice. These results establish that CYP1B1, located exclusively at extrahepatic sites, mediates the carcinogenicity of DMBA. Surprisingly, CYP1A1, which has a high rate of DMBA metabolism in vitro, is not sufficient for this carcinogenesis, which demonstrates the importance of extrahepatic P450s in determining susceptibility to chemical carcinogens and validates the search for associations between P450 expression and cancer risk in humans.
Citations
More filters
Journal ArticleDOI
TL;DR: Recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s are reviewed.

2,832 citations


Cites background from "Cytochrome P450 CYP1B1 determines s..."

  • ...CYP1B1-null mice were resistant to cancerogenic toxicity by 7,12-dimethylbenz[a]anthracene because they lacked metabolic activation to the procarcinogenic 3,4-dihydrodiol metabolite in fibroblasts, emphasizing the importance of extrahepatic CYP1B1 for carcinogenesis (Buters et al., 1999)....

    [...]

Journal ArticleDOI
TL;DR: Differences in AHR affinity between inbred mouse strains reflect variations in CYP1 inducibility and clearly have been shown to be associated with differences in risk of toxicity or cancer caused by PAHs and arylamines.

1,126 citations

Journal ArticleDOI
TL;DR: A two-tiered system to predict an overall inter-individual risk of tumorigenesis based on DNA variants in certain 'early defence' CYP genes, combined with polymorphisms in various downstream target genes is suggested.
Abstract: Some cytochrome P450 (CYP) heme-thiolate enzymes participate in the detoxication and, paradoxically, the formation of reactive intermediates of thousands of chemicals that can damage DNA, as well as lipids and proteins. CYP expression can also affect the production of molecules derived from arachidonic acid, and alters various downstream signal-transduction pathways. Such changes can be precursors to malignancy. Recent studies in mice have changed our perceptions about the function of CYP1 enzymes. We suggest a two-tiered system to predict an overall inter-individual risk of tumorigenesis based on DNA variants in certain 'early defence' CYP genes, combined with polymorphisms in various downstream target genes.

822 citations

Journal ArticleDOI
TL;DR: In CYP1B1 gene‐knockout mice treated with 7,12‐dimethyl‐benz[a]anthracene and dibenzo[a, l]pyrene, decreased rates of tumor formation were observed, when compared to wild‐type mice, and Differences in the susceptibility of individuals to the adverse action of PAHs may, in part, be due to differences in the levels of expression of CYP
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously distributed environmental chemicals. PAHs acquire carcinogenicity only after they have been activated by xenobiotic-metabolizing enzymes to highly reactive metabolites capable of attacking cellular DNA. Cytochrome P450 (CYP) enzymes are central to the metabolic activation of these PAHs to epoxide intermediates, which are converted with the aid of epoxide hydrolase to the ultimate carcinogens, diol-epoxides. Historically, CYP1A1 was believed to be the only enzyme that catalyzes activation of these procarcinogenic PAHs. However, recent studies have established that CYP1B1, a newly identified member of the CYP1 family, plays a very important role in the metabolic activation of PAHs. In CYP1B1 gene-knockout mice treated with 7,12-dimethylbenz[a]anthracene and dibenzo[a,l]pyrene, decreased rates of tumor formation were observed, when compared to wild-type mice. Significantly, gene expression of CYP1A1 and 1B1 is induced by PAHs and polyhalogenated hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin through the arylhydrocarbon receptor. Differences in the susceptibility of individuals to the adverse action of PAHs may, in part, be due to differences in the levels of expression of CYP1A1 and 1B1 and to genetic variations in the CYP1A1 and 1B1 genes.

703 citations

Journal ArticleDOI
01 Sep 2002-Blood
TL;DR: LKLF is the first endothelial transcription factor that is uniquely induced by flow and might therefore be at the molecular basis of the physiological healthy, flow-exposed state of the endothelial cell.

639 citations


Cites background from "Cytochrome P450 CYP1B1 determines s..."

  • ...This includes CYP1B1, since no apparent defects were observed in CYP1B1-null mice, excluding a crucial involvement in vasculogenesis (Buters et al., 1999)....

    [...]

References
More filters
PatentDOI
TL;DR: This new method maintains the high sensitivity and low protein-to-protein variation associated with the Lowry technique and demonstrates a greater tolerance of the bicinchoninate reagent toward such commonly encountered interferences as nonionic detergents and simple buffer salts.

20,907 citations

Journal ArticleDOI
TL;DR: The SRB assay provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening.
Abstract: We have developed a rapid, sensitive, and inexpensive method for measuring the cellular protein content of adherent and suspension cultures in 96-well microtiter plates. The method is suitable for ordinary laboratory purposes and for very large-scale applications, such as the National Cancer Institute's disease-oriented in vitro anticancer-drug discovery screen, which requires the use of several million culture wells per year. Cultures fixed with trichloroacetic acid were stained for 30 minutes with 0.4% (wt/vol) sulforhodamine B (SRB) dissolved in 1% acetic acid. Unbound dye was removed by four washes with 1% acetic acid, and protein-bound dye was extracted with 10 mM unbuffered Tris base [tris (hydroxymethyl)aminomethane] for determination of optical density in a computer-interfaced, 96-well microtiter plate reader. The SRB assay results were linear with the number of cells and with values for cellular protein measured by both the Lowry and Bradford assays at densities ranging from sparse subconfluence to multilayered supraconfluence. The signal-to-noise ratio at 564 nm was approximately 1.5 with 1,000 cells per well. The sensitivity of the SRB assay compared favorably with sensitivities of several fluorescence assays and was superior to those of both the Lowry and Bradford assays and to those of 20 other visible dyes. The SRB assay provides a colorimetric end point that is nondestructive, indefinitely stable, and visible to the naked eye. It provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening. SRB fluoresces strongly with laser excitation at 488 nm and can be measured quantitatively at the single-cell level by static fluorescence cytometry.

9,019 citations

Journal ArticleDOI
TL;DR: This revision supersedes the four previous updates in which a nomenclature system, based on divergent evolution of the P450 superfamily has been described and is similar to that proposed in the previous updates.
Abstract: We provide here a list of 481 P450 genes and 22 pseudogenes, plus all accession numbers that have been reported as of October 18,1995. These genes have been described in 85 eukaryote (including vertebrates, invertebrates, fungi, and plants) and 20 prokaryote species. Of 74 gene families so far descr

2,888 citations

Journal ArticleDOI
24 Nov 1988-Nature
TL;DR: A positive and negative selection procedure is described that enriches 2,000-fold for those cells that contain a targeted mutation in mouse embryo-derived stem cells.
Abstract: Gene targeting—homologous recombination of DNA sequences residing in the chromosome with newly introduced DNA sequences—in mouse embryo-derived stem cells promises to provide a means to generate mice of any desired genotype. We describe a positive and negative selection procedure that enriches 2,000-fold for those cells that contain a targeted mutation. The procedure was applied to the isolation of hprt− and int-2− mutants, but it should be applicable to any gene

1,776 citations

Journal ArticleDOI
TL;DR: It is demonstrated that mPPAR alpha is the major isoform required for mediating the pleiotropic response resulting from the actions of peroxisome proliferators.
Abstract: To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in rodents, we disrupted the ligand-binding domain of the alpha isoform of mouse PPAR (mPPAR alpha) by homologous recombination. Mice homozygous for the mutation lack expression of mPPAR alpha protein and yet are viable and fertile and exhibit no detectable gross phenotypic defects. Remarkably, these animals do not display the peroxisome proliferator pleiotropic response when challenged with the classical peroxisome proliferators, clofibrate and Wy-14,643. Following exposure to these chemicals, hepatomegaly, peroxisome proliferation, and transcriptional-activation of target genes were not observed. These results clearly demonstrate that mPPAR alpha is the major isoform required for mediating the pleiotropic response resulting from the actions of peroxisome proliferators. mPPAR alpha-deficient animals should prove useful to further investigate the role of this receptor in hepatocarcinogenesis, fatty acid metabolism, and cell cycle regulation.

1,615 citations