scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cytokine Storm.

03 Dec 2020-The New England Journal of Medicine-Vol. 383, Iss: 23, pp 2255-2273
TL;DR: From the Department of Medicine, Division of Translational Medicine and Human Genetics, Center for Cytokine Storm Treatment and Laboratory, and the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia.
Abstract: From the Department of Medicine, Division of Translational Medicine and Human Genetics, Center for Cytokine Storm Treatment and Laboratory (D.C.F.), and the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy (C.H.J.), Perelman School of Medicine, University of Pennsylvania, Philadelphia. Address reprint requests to Dr. Fajgenbaum at davidfa@ pennmedicine . upenn . edu or to Dr. June at cjune@ upenn . edu.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial, which used a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence or futility.
Abstract: BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).

1,235 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed that SARS-CoV-2 infection induces a process known as immunothrombosis, in which activated neutrophils and monocytes interact with platelets and the coagulation cascade, leading to intravascular clot formation in small and larger vessels.
Abstract: Coronavirus disease 2019 (COVID-19) is a clinical syndrome caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe disease show hyperactivation of the immune system, which can affect multiple organs besides the lungs. Here, we propose that SARS-CoV-2 infection induces a process known as immunothrombosis, in which activated neutrophils and monocytes interact with platelets and the coagulation cascade, leading to intravascular clot formation in small and larger vessels. Microthrombotic complications may contribute to acute respiratory distress syndrome (ARDS) and other organ dysfunctions. Therapeutic strategies aimed at reducing immunothrombosis may therefore be useful. Several antithrombotic and immunomodulating drugs have been proposed as candidates to treat patients with SARS-CoV-2 infection. The growing understanding of SARS-CoV-2 infection pathogenesis and how it contributes to critical illness and its complications may help to improve risk stratification and develop targeted therapies to reduce the acute and long-term consequences of this disease.

448 citations

Journal ArticleDOI
01 Apr 2021-Cell
TL;DR: In this article, a conceptual framework for the interaction of the human innate immune system with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was provided to link the clinical observations with experimental findings that have been made during the first year of the pandemic.

422 citations

Journal ArticleDOI
TL;DR: Among patients hospitalized with Covid-19 pneumonia, tofacitinib led to a lower risk of death or respiratory failure through day 28 than placebo, and the proportional odds of having a worse score on the eight-level ordinal scale with tofacinib, as compared with placebo.
Abstract: Background The efficacy and safety of tofacitinib, a Janus kinase inhibitor, in patients who are hospitalized with coronavirus disease 2019 (Covid-19) pneumonia are unclear. Methods We ran...

318 citations

Journal ArticleDOI
Lan Yang1, Xueru Xie1, Zikun Tu1, Jinrong Fu1, Damo Xu2, Yufeng Zhou1 
TL;DR: In this paper, the authors discuss the latest developments in the immunopathological characteristics of COVID-19 and focus on CS including the current research status of the different cytokines involved, and discuss the induction, function, downstream signaling and existing and potential interventions for targeting these cytokines or related signal pathways.
Abstract: The Coronavirus Disease 2019 (COVID-19) pandemic has become a global crisis and is more devastating than any other previous infectious disease. It has affected a significant proportion of the global population both physically and mentally, and destroyed businesses and societies. Current evidence suggested that immunopathology may be responsible for COVID-19 pathogenesis, including lymphopenia, neutrophilia, dysregulation of monocytes and macrophages, reduced or delayed type I interferon (IFN-I) response, antibody-dependent enhancement, and especially, cytokine storm (CS). The CS is characterized by hyperproduction of an array of pro-inflammatory cytokines and is closely associated with poor prognosis. These excessively secreted pro-inflammatory cytokines initiate different inflammatory signaling pathways via their receptors on immune and tissue cells, resulting in complicated medical symptoms including fever, capillary leak syndrome, disseminated intravascular coagulation, acute respiratory distress syndrome, and multiorgan failure, ultimately leading to death in the most severe cases. Therefore, it is clinically important to understand the initiation and signaling pathways of CS to develop more effective treatment strategies for COVID-19. Herein, we discuss the latest developments in the immunopathological characteristics of COVID-19 and focus on CS including the current research status of the different cytokines involved. We also discuss the induction, function, downstream signaling, and existing and potential interventions for targeting these cytokines or related signal pathways. We believe that a comprehensive understanding of CS in COVID-19 will help to develop better strategies to effectively control immunopathology in this disease and other infectious and inflammatory diseases.

270 citations

References
More filters
Journal ArticleDOI
TL;DR: The epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of patients with laboratory-confirmed 2019-nCoV infection in Wuhan, China, were reported.

36,578 citations

Journal ArticleDOI
TL;DR: Two types of cloned helper T cells are described, defined primarily by differences in the pattern of lymphokines ynthesized, and the different functions of the two types of cells and their lymphokine synthesis are discussed.
Abstract: Effector functions in the immune system are carried out by a variety of cell types, and as our understanding of the complexity of the system expands, the number of recognized subdivisions of cell types also continues to increase. B lymphocytes, producing antibody, were initially distinguished from T lymphocytes, which provide help for B cells (1, 2). The T-cell population was further divided when surface markers allowed separation of helper cells from cytotoxic cells (3). Although there were persistent reports of heterogeneity in the helper T-cell compartment (reviewed below), only relatively recently were distinct types of helper cells resolved. In this review we describe the differences between two types of cloned helper T cells, defined primarily by differences in the pattern of lymphokines ynthesized, and we also discuss the different functions of the two types of cells and their lymphokines. Patterns of lymphokine synthesis are convenient and explicit markers to describe T-cell subclass differences, and evidence increases that many of the functions of helper T cells are predicted by the functions of the lymphokines that they synthesize after activation by antigen and presenting cells. The separation of many mouse helper T-cell clones into these two distinct types is now well established, but their origin in normal T-cell populations is still not clear. Further divisions of helper T cells may have to be recognized before a complete picture of helper T-cell function can be obtained.

7,814 citations

Journal ArticleDOI
TL;DR: In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour, which can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals.
Abstract: In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour. When activation of the peripheral immune system continues unabated, such as during systemic infections, cancer or autoimmune diseases, the ensuing immune signalling to the brain can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals. These phenomena might account for the increased prevalence of clinical depression in physically ill people. Inflammation is therefore an important biological event that might increase the risk of major depressive episodes, much like the more traditional psychosocial factors.

5,665 citations

Journal ArticleDOI
TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Abstract: CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORγt, and RORα) involved in the development of Th17 cells have just been identified. The participation of TGF-β in the differentiation of Th17 cells places ...

4,548 citations

Journal ArticleDOI
09 Mar 2006-Nature
TL;DR: It is shown that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18 in mice deficient in the IL-1β receptor.
Abstract: Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a 'danger signal' released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1beta and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1beta activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1beta receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.

4,504 citations

Related Papers (5)