scispace - formally typeset
Search or ask a question
Journal ArticleDOI

DADA2: High-resolution sample inference from Illumina amplicon data

01 Jul 2016-Nature Methods (Nature Publishing Group)-Vol. 13, Iss: 7, pp 581-583
TL;DR: The open-source software package DADA2 for modeling and correcting Illumina-sequenced amplicon errors is presented, revealing a diversity of previously undetected Lactobacillus crispatus variants.
Abstract: We present the open-source software package DADA2 for modeling and correcting Illumina-sequenced amplicon errors (https://github.com/benjjneb/dada2). DADA2 infers sample sequences exactly and resolves differences of as little as 1 nucleotide. In several mock communities, DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
Evan Bolyen1, Jai Ram Rideout1, Matthew R. Dillon1, Nicholas A. Bokulich1, Christian C. Abnet2, Gabriel A. Al-Ghalith3, Harriet Alexander4, Harriet Alexander5, Eric J. Alm6, Manimozhiyan Arumugam7, Francesco Asnicar8, Yang Bai9, Jordan E. Bisanz10, Kyle Bittinger11, Asker Daniel Brejnrod7, Colin J. Brislawn12, C. Titus Brown4, Benjamin J. Callahan13, Andrés Mauricio Caraballo-Rodríguez14, John Chase1, Emily K. Cope1, Ricardo Silva14, Christian Diener15, Pieter C. Dorrestein14, Gavin M. Douglas16, Daniel M. Durall17, Claire Duvallet6, Christian F. Edwardson, Madeleine Ernst14, Madeleine Ernst18, Mehrbod Estaki17, Jennifer Fouquier19, Julia M. Gauglitz14, Sean M. Gibbons20, Sean M. Gibbons15, Deanna L. Gibson17, Antonio Gonzalez14, Kestrel Gorlick1, Jiarong Guo21, Benjamin Hillmann3, Susan Holmes22, Hannes Holste14, Curtis Huttenhower23, Curtis Huttenhower24, Gavin A. Huttley25, Stefan Janssen26, Alan K. Jarmusch14, Lingjing Jiang14, Benjamin D. Kaehler25, Benjamin D. Kaehler27, Kyo Bin Kang28, Kyo Bin Kang14, Christopher R. Keefe1, Paul Keim1, Scott T. Kelley29, Dan Knights3, Irina Koester14, Tomasz Kosciolek14, Jorden Kreps1, Morgan G. I. Langille16, Joslynn S. Lee30, Ruth E. Ley31, Ruth E. Ley32, Yong-Xin Liu, Erikka Loftfield2, Catherine A. Lozupone19, Massoud Maher14, Clarisse Marotz14, Bryan D Martin20, Daniel McDonald14, Lauren J. McIver23, Lauren J. McIver24, Alexey V. Melnik14, Jessica L. Metcalf33, Sydney C. Morgan17, Jamie Morton14, Ahmad Turan Naimey1, Jose A. Navas-Molina34, Jose A. Navas-Molina14, Louis-Félix Nothias14, Stephanie B. Orchanian, Talima Pearson1, Samuel L. Peoples35, Samuel L. Peoples20, Daniel Petras14, Mary L. Preuss36, Elmar Pruesse19, Lasse Buur Rasmussen7, Adam R. Rivers37, Michael S. Robeson38, Patrick Rosenthal36, Nicola Segata8, Michael Shaffer19, Arron Shiffer1, Rashmi Sinha2, Se Jin Song14, John R. Spear39, Austin D. Swafford, Luke R. Thompson40, Luke R. Thompson41, Pedro J. Torres29, Pauline Trinh20, Anupriya Tripathi14, Peter J. Turnbaugh10, Sabah Ul-Hasan42, Justin J. J. van der Hooft43, Fernando Vargas, Yoshiki Vázquez-Baeza14, Emily Vogtmann2, Max von Hippel44, William A. Walters32, Yunhu Wan2, Mingxun Wang14, Jonathan Warren45, Kyle C. Weber37, Kyle C. Weber46, Charles H. D. Williamson1, Amy D. Willis20, Zhenjiang Zech Xu14, Jesse R. Zaneveld20, Yilong Zhang47, Qiyun Zhu14, Rob Knight14, J. Gregory Caporaso1 
TL;DR: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and R.K.P. and partial support was also provided by the following: grants NIH U54CA143925 and U54MD012388.
Abstract: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and 1565057 to R.K. Partial support was also provided by the following: grants NIH U54CA143925 (J.G.C. and T.P.) and U54MD012388 (J.G.C. and T.P.); grants from the Alfred P. Sloan Foundation (J.G.C. and R.K.); ERCSTG project MetaPG (N.S.); the Strategic Priority Research Program of the Chinese Academy of Sciences QYZDB-SSW-SMC021 (Y.B.); the Australian National Health and Medical Research Council APP1085372 (G.A.H., J.G.C., Von Bing Yap and R.K.); the Natural Sciences and Engineering Research Council (NSERC) to D.L.G.; and the State of Arizona Technology and Research Initiative Fund (TRIF), administered by the Arizona Board of Regents, through Northern Arizona University. All NCI coauthors were supported by the Intramural Research Program of the National Cancer Institute. S.M.G. and C. Diener were supported by the Washington Research Foundation Distinguished Investigator Award.

8,821 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: The results illustrate the importance of parameter tuning for optimizing classifier performance, and the recommendations regarding parameter choices for these classifiers under a range of standard operating conditions are made.
Abstract: Taxonomic classification of marker-gene sequences is an important step in microbiome analysis. We present q2-feature-classifier ( https://github.com/qiime2/q2-feature-classifier ), a QIIME 2 plugin containing several novel machine-learning and alignment-based methods for taxonomy classification. We evaluated and optimized several commonly used classification methods implemented in QIIME 1 (RDP, BLAST, UCLUST, and SortMeRNA) and several new methods implemented in QIIME 2 (a scikit-learn naive Bayes machine-learning classifier, and alignment-based taxonomy consensus methods based on VSEARCH, and BLAST+) for classification of bacterial 16S rRNA and fungal ITS marker-gene amplicon sequence data. The naive-Bayes, BLAST+-based, and VSEARCH-based classifiers implemented in QIIME 2 meet or exceed the species-level accuracy of other commonly used methods designed for classification of marker gene sequences that were evaluated in this work. These evaluations, based on 19 mock communities and error-free sequence simulations, including classification of simulated “novel” marker-gene sequences, are available in our extensible benchmarking framework, tax-credit ( https://github.com/caporaso-lab/tax-credit-data ). Our results illustrate the importance of parameter tuning for optimizing classifier performance, and we make recommendations regarding parameter choices for these classifiers under a range of standard operating conditions. q2-feature-classifier and tax-credit are both free, open-source, BSD-licensed packages available on GitHub.

2,475 citations


Cites background or methods from "DADA2: High-resolution sample infer..."

  • ...Additionally, marker-gene amplicon sequence analysis pipelines commonly utilize denoising methods [4] to model per-run error profiles, filter noisy sequences, and resolve actual sequence variants....

    [...]

  • ...The exact sequences were used for cross validation and were not altered to simulate any sequencing error; thus, our benchmarks simulate denoised sequence data [4] and isolate classifier performance from impacts from sequencing errors....

    [...]

  • ...ngram_range [4,4], [8, 8], [16, 16], [4,16]...

    [...]

  • ...com/qiime2/q2-demux) and quality filtered and dereplicated with q2-dada2 [4]....

    [...]

  • ...Challenges in this process include the short length of typical sequencing reads with current technology, sequencing and PCR errors [4], selection of appropriate marker genes that contain sufficient heterogeneity to differentiate target species but that are homogeneous enough in some regions to design broad-spectrum primers, quality of reference sequence annotations [5], and selection of a method that accurately predicts the taxonomic affiliation of millions of sequences at low computational cost....

    [...]

Journal ArticleDOI
TL;DR: It is argued that the improvements in reusability, reproducibility and comprehensiveness are sufficiently great that ASVs should replace OTUs as the standard unit of marker-gene analysis and reporting.
Abstract: Recent advances have made it possible to analyze high-throughput marker-gene sequencing data without resorting to the customary construction of molecular operational taxonomic units (OTUs): clusters of sequencing reads that differ by less than a fixed dissimilarity threshold. New methods control errors sufficiently such that amplicon sequence variants (ASVs) can be resolved exactly, down to the level of single-nucleotide differences over the sequenced gene region. The benefits of finer resolution are immediately apparent, and arguments for ASV methods have focused on their improved resolution. Less obvious, but we believe more important, are the broad benefits that derive from the status of ASVs as consistent labels with intrinsic biological meaning identified independently from a reference database. Here we discuss how these features grant ASVs the combined advantages of closed-reference OTUs—including computational costs that scale linearly with study size, simple merging between independently processed data sets, and forward prediction—and of de novo OTUs—including accurate measurement of diversity and applicability to communities lacking deep coverage in reference databases. We argue that the improvements in reusability, reproducibility and comprehensiveness are sufficiently great that ASVs should replace OTUs as the standard unit of marker-gene analysis and reporting.

1,977 citations

Journal ArticleDOI
TL;DR: The application of decontam to two recently published datasets corroborated and extended their conclusions that little evidence existed for an indigenous placenta microbiome and that some low-frequency taxa seemingly associated with preterm birth were contaminants.
Abstract: The accuracy of microbial community surveys based on marker-gene and metagenomic sequencing (MGS) suffers from the presence of contaminants—DNA sequences not truly present in the sample. Contaminants come from various sources, including reagents. Appropriate laboratory practices can reduce contamination, but do not eliminate it. Here we introduce decontam ( https://github.com/benjjneb/decontam ), an open-source R package that implements a statistical classification procedure that identifies contaminants in MGS data based on two widely reproduced patterns: contaminants appear at higher frequencies in low-concentration samples and are often found in negative controls. Decontam classified amplicon sequence variants (ASVs) in a human oral dataset consistently with prior microscopic observations of the microbial taxa inhabiting that environment and previous reports of contaminant taxa. In metagenomics and marker-gene measurements of a dilution series, decontam substantially reduced technical variation arising from different sequencing protocols. The application of decontam to two recently published datasets corroborated and extended their conclusions that little evidence existed for an indigenous placenta microbiome and that some low-frequency taxa seemingly associated with preterm birth were contaminants. Decontam improves the quality of metagenomic and marker-gene sequencing by identifying and removing contaminant DNA sequences. Decontam integrates easily with existing MGS workflows and allows researchers to generate more accurate profiles of microbial communities at little to no additional cost.

1,287 citations


Cites background from "DADA2: High-resolution sample infer..."

  • ...In marker-gene data, we expect the best performance will be achieved with post-denoising ASVs [53, 58] as ASVs are less prone than OTUs to grouping contaminants with related real strains....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: An overview of the analysis pipeline and links to raw data and processed output from the runs with and without denoising are provided.
Abstract: Supplementary Figure 1 Overview of the analysis pipeline. Supplementary Table 1 Details of conventionally raised and conventionalized mouse samples. Supplementary Discussion Expanded discussion of QIIME analyses presented in the main text; Sequencing of 16S rRNA gene amplicons; QIIME analysis notes; Expanded Figure 1 legend; Links to raw data and processed output from the runs with and without denoising.

28,911 citations

Journal ArticleDOI
TL;DR: M mothur is used as a case study to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the α and β diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments.
Abstract: mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.

17,350 citations

Journal ArticleDOI
TL;DR: UCHIME has better sensitivity than ChimeraSlayer (previously the most sensitive database method), especially with short, noisy sequences, and in testing on artificial bacterial communities with known composition, UCHIME de novo sensitivity is shown to be comparable to Perseus.
Abstract: Motivation: Chimeric DNA sequences often form during polymerase chain reaction amplification, especially when sequencing single regions (e.g. 16S rRNA or fungal Internal Transcribed Spacer) to assess diversity or compare populations. Undetected chimeras may be misinterpreted as novel species, causing inflated estimates of diversity and spurious inferences of differences between populations. Detection and removal of chimeras is therefore of critical importance in such experiments. Results: We describe UCHIME, a new program that detects chimeric sequences with two or more segments. UCHIME either uses a database of chimera-free sequences or detects chimeras de novo by exploiting abundance data. UCHIME has better sensitivity than ChimeraSlayer (previously the most sensitive database method), especially with short, noisy sequences. In testing on artificial bacterial communities with known composition, UCHIME de novo sensitivity is shown to be comparable to Perseus. UCHIME is >100× faster than Perseus and >1000× faster than ChimeraSlayer. Contact: [email protected] Availability: Source, binaries and data: http://drive5.com/uchime. Supplementary information:Supplementary data are available at Bioinformatics online.

11,904 citations

Journal ArticleDOI
TL;DR: The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% correct bases commonly reported by other methods.
Abstract: Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.

11,329 citations

Journal ArticleDOI
Curtis Huttenhower1, Curtis Huttenhower2, Dirk Gevers2, Rob Knight3  +250 moreInstitutions (42)
14 Jun 2012-Nature
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Abstract: The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome.

8,410 citations

Trending Questions (2)
The income and spending of senior high school students?

The provided paper is about the DADA2 software package for modeling and correcting Illumina-sequenced amplicon errors. It does not provide any information about the income and spending of senior high school students.

How can I best normalise my samples from amplicon data?

The paper does not provide information on how to best normalize samples from amplicon data. The paper focuses on the DADA2 software package for modeling and correcting Illumina-sequenced amplicon errors.