scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Damage induced to DNA by low-energy (0-30 eV) electrons under vacuum and atmospheric conditions.

23 Jul 2009-Journal of Physical Chemistry B (American Chemical Society)-Vol. 113, Iss: 29, pp 10008-10013
TL;DR: It is shown that it is possible to obtain data on DNA damage induced by low-energy (0-30 eV) electrons under atmospheric conditions and the differences in damage yields recorded with the gold and glass substrates is essentially attributed to the interaction of low- energy electrons with DNA under vacuum and hydrated conditions.
Abstract: In this study, we show that it is possible to obtain data on DNA damage induced by low-energy (0-30 eV) electrons under atmospheric conditions. Five monolayer films of plasmid DNA (3197 base pairs) deposited on glass and gold substrates are irradiated with 1.5 keV X-rays in ultrahigh vacuum and under atmospheric conditions. The total damage is analyzed by agarose gel electrophoresis. The damage produced on the glass substrate is attributed to energy absorption from X-rays, whereas that produced on the gold substrate arises from energy absorption from both the X-ray beam and secondary electrons emitted from the gold surface. By analysis of the energy of these secondary electrons, 96% are found to have energies below 30 eV with a distribution peaking at 1.4 eV. The differences in damage yields recorded with the gold and glass substrates is therefore essentially attributed to the interaction of low-energy electrons with DNA under vacuum and hydrated conditions. From these results, the G values for low-energy electrons are determined to be four and six strand breaks per 100 eV, respectively.

Summary (2 min read)

Atmospheric Conditions

  • Émilie Brun,† Pierre Cloutier,‡ Cécile Sicard-Roselli,† Michel Fromm,§ and Léon Sanche*,†,‡ Laboratoire de Chimie Physique, CNRS UMR 8000, UniVersité Paris-Sud 11, Bât.
  • The authors present knowledge of LEE-biomolecule interactions arises from both theoretical and experimental investigations.
  • Molecules that could be evaporated in a vacuum environment without decomposition have usually been studied as gases, but some studies have also been reported on solid molecular films.
  • 23,24 The apparatus is equipped with an Al KR X-ray source, but the metal target can be replaced for X-ray emission at other characteristic energies.
  • To delineate the portion of DNA damage caused by X-rays and that arising from LEE interactions, the authors performed experiments with films deposited on an insulator and the electron-emitting gold surface under different environmental conditions.

II. Experimental Methods

  • PGEM-3Zf(-) plasmid DNA (3197 base pairs, Promega) was extracted from Escherichia coli DH5R and purified with the QIAfilter Plasmid Giga Kit .
  • The stock solution concentration was approximatively 50 ng ·µL-1. DNA purity was checked by recording the ratio between absorbances at 260 and 280 nm.27-29 Sample Preparation.
  • The lyophilized samples were exposed to the Al KR X-rays produced, under atmospheric conditions, from a cold-cathode transmission target X-ray tube.
  • The discharge electron current is controlled by the stabilized circulation of the N2 gas with the leak valve.
  • The absorbed dose rate in water, according to the ionization chamber measurement, was 2.1 Gy ·min-1. A linear relationship between log10(I0/I) and the dose was obtained in the range 0-100 Gy.

III. Results

  • Within experimental error, the loss of the supercoiled form is a linear function of the photon fluence.
  • The enhancement factors (EF) derived from these values appear on the right.
  • As expected, the gold substrate enhances DNA damage.
  • The percentage yields derived from the slope of these curves are given in the second line of Table 1.
  • For 0-30 eV SE, the energy distribution η(Ek) was calculated using33 where ηs is a coefficient that normalizes the yield of SEs having kinetic energy of Ek and W is the work function of gold, that is, 4.8 eV.34 Ninety-six percent of these SEs have energies below 30 eV, and the average energy for these electrons is 5.9 eV.

IV. Discussion

  • Given the mass absorption coefficient of DNA36 and the formula for transmitted photons (Xtrans in the Supporting Information), one can calculate that within a 5 ML film, 0.2% of 1.5 keV photons interact with DNA, while the rest pass through DNA.
  • Thus, DNA damage is induced by both X-ray photons and LEEs when DNA lies on a gold substrate.
  • In the presence of water, the G value of LEEs further increases by 50% whereas that of X-rays remains the same within instrumental error.
  • In dilute solution of DNA, the hydroxyl radical (OH) is considered to be the secondary species formed by water radiolysis that produces the largest amount of DNA damage.
  • The D(2S), O(3P2), and O(1D2) yields versus incident electron energy have an apparent threshold at ∼6.5 eV with a steadily increasing intensity.

V. Conclusion

  • The authors have shown that photoelectrons emitted from a gold substrate can be used as a source of low-energy electrons (LEEs) to irradiate DNA films under atmospheric conditions.
  • LEE damage to plasmid DNA with its hydratation shell was measured from comparison of results obtained with films deposited on gold and glass substrates.
  • The authors thank Ariane Dumont for providing us with the plasmid.
  • Details about of the calculations of the G values for photons and low-energy electrons, also known as Supporting Information Available.
  • This material is available free of charge via the Internet at http://pubs.acs.org.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase of the ECSBM using a single chiral Monte Carlo method, developed at the University of California, Berkeley, in 1998 and refined at the behest of the manufacturer.
Abstract: s; Proceeding of IX ECSBM, Prague, Czech Republic, 2001. (176) Abouaf, R.; Pommier, J.; Dunet, H. Int. J. Mass Spectrom. 2003, 226, 397. (177) Denifl, S.; Ptasin ́ska, S.; Cingel, M.; Matejcik, S.; Scheier, P.; Mar̈k, T. D. Chem. Phys. Lett. 2003, 377, 74. (178) Gohlke, S.; Abdoul-Carime, H.; Illenberger, E. Chem. Phys. Lett. 2003, 380, 595. (179) Abdoul-Carime, H.; Gohlke, S.; Illenberger, E. Phys. Rev. Lett. 2004, 92, 168103. (180) Ptasin ́ska, S.; Denifl, S.; Grill, V.; Mar̈k, T. D.; Scheier, P.; Gohlke, S.; Huels, M. A.; Illenberger, E. Angew. Chem., Int. Ed. 2005, 44, 1657. (181) Aflatooni, K.; Gallup, G. A.; Burrow, P. D. J. Phys. Chem. A 1998, 102, 6205. (182) Burrow, P. D.; Gallup, G. A.; Scheer, A. M.; Denifl, S.; Ptasinska, S.; Mar̈k, T. D.; Scheier, P. J. Chem. Phys. 2006, 124, 124310. (183) Aflatooni, K.; Scheer, A. M.; Burrow, P. D. Chem. Phys. Lett. 2005, 408, 426. (184) Naaman, R.; Sanche, L. Chem. Rev. 2007, 107, 1553. (185) Li, X.; Sevilla, M. D.; Sanche, L. J. Phys. Chem. B 2004, 108, 19013. (186) Ptasin ́ska, S.; Denifl, S.; Mroź, B.; Probst, M.; Grill, V.; Illenberger, E.; Scheier, P.; Mar̈k, T. D. J. Chem. Phys. 2005, 123, 124302. (187) Li, Z.; Cloutier, P.; Sanche, L.; Wagner, J. R. J. Phys. Chem. B 2011, 115, 13668. (188) Li, X.; Sevilla, M. D.; Sanche, L. J. Phys. Chem. B 2004, 108, 5472. (189) Ptasin ́ska, S.; Denifl, S.; Scheier, P.; Illenberger, E.; Mar̈k, T. D. Angew. Chem., Int. Ed. 2005, 44, 6941. (190) Zheng, Y.; Cloutier, P.; Hunting, D. J.; Wagner, J. R.; Sanche, L. J. Am. Chem. Soc. 2004, 126, 1002. (191) Huels, M. A.; Parenteau, L.; Michaud, M.; Sanche, L. Phys. Rev. A 1995, 51, 337. (192) Abdoul-Carime, H.; Cloutier, P.; Sanche, L. Radiat. Res. 2001, 155, 625. (193) Baccarelli, I.; Bald, I.; Gianturco, F. A.; Illenberger, E.; Kopyra, J. Phys. Rep. 2011, 508, 1. (194) Ptasin ́ska, S.; Denifl, S.; Scheier, P.; Mar̈k, T. D. J. Chem. Phys. 2004, 120, 8505. (195) Antic, D.; Parenteau, L.; Lepage, M.; Sanche, L. J. Phys. Chem. 1999, 103, 6611. (196) Antic, D.; Parenteau, L.; Sanche, L. J. Phys. Chem. B 2000, 104, 4711. (197) Huels, M. A.; Parenteau, L.; Sanche, L. J. Phys. Chem. B 2004, 108, 16303. (198) Pan, X.; Sanche, L. Chem. Phys. Lett. 2006, 421, 404. (199) Pan, X.; Sanche, L. Phys. Rev. Lett. 2005, 94, 198104. (200) Sulzer, P.; Mauracher, A.; Denifl, S.; Zappa, F.; Ptasin ́ska, S.; Beikircher, M.; Bacher, A.; Wendt, N.; Aleem, A.; Rondino, F.; Matejcik, S.; Probst, M.; Mar̈k, T. D.; Scheier, P. Anal. Chem. 2007, 79, 6585. (201) Gu, J.; Xie, Y.; Schaefer, H. F. Chem.Eur. J. 2010, 16, 5089. (202) Zheng, Y.; Cloutier, P.; Hunting, D. J.; Sanche, L.; Wagner, J. R. J. Am. Chem. Soc. 2005, 127, 16592. (203) Zheng, Y.; Wagner, J. R.; Sanche, L. Phys. Rev. Lett. 2006, 96, 208101. (204) Zheng, Y.; Cloutier, P.; Hunting, D. J.; Wagner, J. R.; Sanche, L. J. Chem. Phys. 2006, 124, 9. (205) Huels, M.; Boudaïffa, B.; Cloutier, P.; Hunting, D. J.; Sanche, L. J. Am. Chem. Soc. 2003, 125, 4467. (206) Boudaïffa, B.; Hunting, D. J.; Cloutier, P.; Huels, M. A.; Sanche, L. Int. J. Radiat. Biol. 2000, 76, 1209. (207) Boudaïffa, B.; Cloutier, P.; Hunting, D. J.; Huels, M. A.; Sanche, L. Med. Sci 2000, 16, 1281. (208) Martin, F.; Burrow, P. D.; Cai, Z.; Cloutier, P.; Hunting, D. J.; Sanche, L. Phys. Rev. Lett. 2004, 93, 068101. (209) Panajotovic, R.; Martin, F.; Cloutier, P.; Hunting, D. J.; Sanche, L. Radiat. Res. 2006, 165, 452. (210) Li, X.; Sevilla, M. D.; Sanche, L. J. Am. Chem. Soc. 2003, 125, 13668. (211) Simons, J. Acc. Chem. Res. 2006, 39, 772. (212) Bao, X.; Wang, J.; Gu, J.; Leszczynski, J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5658. (213) Caron, L.; Sanche, L. Phys. Rev. A: At., Mol. Opt. Phys. 2004, 70, 032719. (214) Caron, L. G.; Sanche, L. In Low-energy Electron Scattering from Molecules, Biomolecules and Surfaces; Čaŕsky, P., Čurík, R., Eds.; CRC Press (Taylor and Francis Group): Boca Raton, FL, 2012; pp 161− 230. (215) Lin, S. D. Radiat. Res. 1974, 59, 521. (216) Abdoul-Carime, H.; Sanche, L. Radiat. Res. 2003, 160, 86. (217) Abdoul-Carime, H.; Sanche, L. J. Phys. Chem. B 2004, 108, 457. (218) Abdoul-Carime, H.; Cecchini, S.; Sanche, L. Radiat. Res. 2002, 158, 23. (219) Ptasin ́ska, S.; Denifl, S.; Candor, P.; Matejcik, S.; Scheier, P.; Mar̈k, T. D. Chem. Phys. Lett. 2005, 403, 107. (220) Abdoul-Carime, H.; Gohlke, S.; Illenberger, E. Chem. Phys. Lett. 2005, 402, 497. (221) Gohlke, S.; Rosa, A.; Illenberger, E.; Brüning, F.; Huels, M. A. J. Chem. Phys. 2002, 116, 10164. (222) Ptasin ́ska, S.; Denifl, S.; Abedi, A.; Scheier, P.; Mar̈k, T. D. Anal. Bioanal. Chem. 2003, 377, 1115. (223) Abdoul-Carime, H.; Illenberger, E. Chem. Phys. Lett. 2004, 397, 309. (224) Sulzer, P.; Alizadeh, E.; Mauracher, A.; Scheier, P.; Mar̈k, T. D. Int. J. Mass. Spectrom. 2008, 277, 274. (225) Abdoul-Carime, H.; Gohlke, S.; Illenberger, E. Phys. Chem. Chem. Phys. 2004, 6, 161. (226) Alizadeh, E. Dissociative Electron Attachment to Biomolecules. Ph.D Thesis, University of Innsbruck, Innsbruck, Austria, August 2009. (227) Alizadeh, E.; Gschliesser, D.; Bartl, P.; Edtbauer, A.; Vizcaino, V.; Mauracher, A.; Probst, M.; Mar̈k, T. D.; Ptasin ́ska, S.; Mason, N. J.; Denifl, S.; Scheier, P. J. Chem. Phys. 2011, 134, 054305. (228) Vasil’ev, Y. V.; Figard, B. J.; Barofsky, D. F.; Deinzer, M. L. J. Am. Chem. Soc. 2007, 268, 106. (229) Cloutier, P.; Sicard-Roselli, C.; Escher, E.; Sanche, L. J. Phys. Chem. B 2007, 111, 1620. (230) Ptasin ́ska, S.; Li, Z.; Mason, N. J.; Sanche, L. Phys. Chem. Chem. Phys. 2010, 12, 9367. (231) Wang, J.; Gu, J.; Leszczynski, J. Chem. Phys. Lett. 2007, 442, 124. (232) Ptasin ́ska, S.; Sanche, L. Phys. Rev. E 2007, 75, 031915. (233) Falk, M.; Hartman, K. A.; Lord, R. C. J. Am. Chem. Soc. 1963, 85, 387. (234) Orlando, T. M.; Oh, D.; Chen, Y.; Aleksandrov, A. B. J. Chem. Phys. 2008, 128, 195102. (235) Dumont, A.; Zheng, Y.; Hunting, D.; Sanche, L. J. Chem. Phys. 2010, 132, 045102. (236) Solomun, T.; Skalicky, T. Chem. Phys. Lett. 2008, 453, 101. (237) Lett, J. T.; Alexander, P. Radiat. Res. 1961, 15, 159. Chemical Reviews Review dx.doi.org/10.1021/cr300063r | Chem. Rev. XXXX, XXX, XXX−XXX X (238) Neary, G. J.; Simpson-Gildemeister, V. F. W.; Peacocke, A. R. Int. J. Radiat. Biol. 1970, 18, 25. (239) Hearst, J. E.; Vinogard, J. Proc. Natl. Acad. Sci. U.S.A. 1961, 47, 825. (240) Saenger, W. Principles of Nucleic Acid Structure; SpringerVerlag: New York, NY, 1984. (241) Jeffrey, G.; Saenger, W. Hydration Bonding in Biological Structures; Springer-Verlag: New York, NY, 1991. (242) Tao, N. J.; Lindsay, S. M.; Rupprecht, A. Biopolymers 1989, 28, 1019. (243) Swarts, S.; Sevilla, M. D.; Becker, D.; Tokar, C.; Wheeler, K. Radiat. Res. 1992, 129, 333. (244) Brun, É.; Cloutier, P.; Sicard-Roselli, C.; Fromm, M.; Sanche, L. J. Phys. Chem. B 2009, 113, 10008. (245) Cai, Z.; Cloutier, P.; Hunting, D. J.; Sanche, L. J. Phys. Chem. B 2005, 109, 4796. (246) de Lara, C. M.; Jenner, T. J.; Townsend, K. M. S.; Marsden, S. J.; O’Neill, P. Radiat. Res. 1995, 144, 43. (247) Alizadeh, E.; Cloutier, P.; Hunting, D. J.; Sanche, L. J. Phys. Chem. B 2011, 115, 4796. (248) Samuni, A.; Czapski, G. Radiat. Res. 1978, 76, 624. (249) Roots, R.; Chatterjee, A.; Blakely, E.; Chang, P.; Smith, K.; Tobias, C. Radiat. Res. 1982, 92, 245. (250) Ewing, D.; Walton, H. L.; Guilfoil, D. S.; Ohm, M. B. Int. J. Radiat. Biol. 1991, 59, 717. (251) Alizadeh, E.; Sanche, L. Radiat. Phys. Chem. 2012, 81, 33. (252) Nikjoo, H.; Lindborg, L. Phys. Med. Biol. 2010, 55, R65. (253) Alizadeh, E.; Sanche, L. J. Phys. Chem. B 2011, 115, 14852. (254) Devita Jr, V. T.; Hellman, S.; Resenberg, S. A. Cancer: Principles and Practice of Oncology; Lippincott Williams and Wilkins: New York, NY, 2001. (255) Saif, M. W.; Diaso, R. B. In Chemoradiation in Cancer Therapy; Choy, H., Ed.; Humana Press: Totowa, NJ, 2003; pp 23−44. (256) Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467. (257) Lippard, S. J. Pure Appl. Chem. 1987, 59, 731. (258) Zheng, Y.; Hunting, D. J.; Ayotte, P.; Sanche, L. Phys. Rev. Lett. 2008, 100, 198101. (259) Rezaee, M.; Hunting, D. J.; Sanche, L. Results to be published. (260) Rezaee, M.; Alizadeh, E.; Hunting, D. J.; Sanche, L. Bioinorg. Chem. Appl. 2011, 2012, 1. (261) Seiwert, T. Y.; Salama, J. K.; Vokes, E. E. Nat. Clin. Pract. Oncol. 2007, 4, 86. (262) Zimbrick, J. D.; Sukrochana, A.; Richmond, R. C. Int. J. Radiat. Oncol. Biol. Phys. 1979, 5, 1351. (263) Lelieveld, P.; Scoles, M. A.; Brown, J. M.; Kallman, R. F. Int. J. Radiat. Oncol. Biol. Phys. 1985, 11, 111. (264) Sanche, L. Chem. Phys. Lett. 2009, 474, 1 (and references therein). (265) Zheng, Y.; Hunting, D. J.; Ayotte, P.; Sanche, L. Radiat. Res. 2008, 169, 19. (266) Heb́ert, E. M.; debouttier̀e, P. J.; Lepage, M.; Sanche, L.; Hunting, D. J. Int. J. Radiat. Biol. 2010, 86, 692. (267) Herold, D. M.; Das, I. J.; Stobbe, C. C.; Iyer, R. V.; Chapman, J. D. Int. J. Radiat. Biol. 2000, 76, 1357. (268) Whyman, R. Gold Bull. 1996, 29, 11. (269) Chen, W.; Zhang, J. J. Nanosci. Nanotechnol. 2006, 6, 1159. (270) Anshup, A.; Venkataraman, J. S.; Subramaniam, C.; Kumar, R. R.; Priya, S.; Kumar, T. R. S.; Omkumar, R. V.; John, A.; Pradeep, T. Langmuir 2005, 21, 11562. (271) Niidome, T.; Nakashima, K.; Takahashi, H.; Niidome, Y. Chem. Commun. 2004, 17, 1978. (272) Brun, E.; Duchambon, P.; Blouquit, Y.; Keller, G.; Sanche, L.; Sicard-Roselli, C. Radiat. Phys. Chem. 2009, 78, 177. (273) Foley, E. A.; Carter, J. D.; Shan, F.; Guo, T. Chem. Commun. 2005, 25, 3192. (274) Carter, J. D.; Cheng, N. N.; Qu, Y.; Suarez, G. D.; Guo, T. J. Phys. Chem. B 2007, 111, 11622. (275) Butterworth, K. T.; Wyer, J. A.; Brennan-Fournet, M.; Latimer, C. J.; Shah, M. B.; Currell, F. J.; Hirst, D. G. Radiat. Res. 2008, 170, 381. (276) Chang, M.; Shiau, A.; Chen, Y.; Chang, C.; Chen, H.; Wu, C. Cancer Sci. 2008, 99, 1479. (277) Xiao, F.; Zheng, Z.; Cloutier, P.; He, Y.; Hunting, D. J.; Sanche, L. Nanotechnology 2011, 22, 465101. (278) Zheng, Y.; Sanche, L. Radiat. Res. 2009, 172, 114. (279) German, E. D.;

282 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the production of low-energy electrons in amorphous medium-sized water clusters, which simulate water molecules in an aqueous environment, and identify a hitherto unrecognized extra source of lowenergy electrons produced by a non-local autoionization process called intermolecular coulombic decay (ICD).
Abstract: Most of the low-energy electrons emitted from a material when it is subjected to ionization radiation are believed to be directly ionized secondary electrons. Coincidence measurements of the electrons ejected from water clusters suggests many are produced by a quantitatively new mechanism, known as intermolecular Coulombic decay. Low-energy electrons are the most abundant product of ionizing radiation in condensed matter. The origin of these electrons is most commonly understood to be secondary electrons1 ionized from core or valence levels by incident radiation and slowed by multiple inelastic scattering events. Here, we investigate the production of low-energy electrons in amorphous medium-sized water clusters, which simulate water molecules in an aqueous environment. We identify a hitherto unrecognized extra source of low-energy electrons produced by a non-local autoionization process called intermolecular coulombic decay2 (ICD). The unequivocal signature of this process is observed in coincidence measurements of low-energy electrons and photoelectrons generated from inner-valence states with vacuum-ultraviolet light. As ICD is expected to take place universally in weakly bound aggregates containing light atoms between carbon and neon in the periodic table2,3, these results could have implications for our understanding of ionization damage in living tissues.

233 citations


Cites result from "Damage induced to DNA by low-energy..."

  • ...These results have now been confirmed in humid air, thus resembling more closely conditions in the cel...

    [...]

Journal ArticleDOI
04 Mar 2011-Cancers
TL;DR: A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents, holds an array of promising directions for cancer research.
Abstract: The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to generate innovations and play a critical role in cancer therapeutics. Among other nanoparticle (NP) systems, there has been tremendous progress made in the use of spherical gold NPs (GNPs), gold nanorods (GNRs), gold nanoshells (GNSs) and gold nanocages (GNCs) in cancer therapeutics. In treating cancer, radiation therapy and chemotherapy remain the most widely used treatment options and recent developments in cancer research show that the incorporation of gold nanostructures into these protocols has enhanced tumor cell killing. These nanostructures further provide strategies for better loading, targeting, and controlling the release of drugs to minimize the side effects of highly toxic anticancer drugs used in chemotherapy and photodynamic therapy. In addition, the heat generation capability of gold nanostructures upon exposure to UV or near infrared light is being used to damage tumor cells locally in photothermal therapy. Hence, gold nanostructures provide a versatile platform to integrate many therapeutic options leading to effective combinational therapy in the fight against cancer. In this review article, the recent progress in the development of gold-based NPs towards improved therapeutics will be discussed. A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents, holds an array of promising directions for cancer research.

132 citations


Cites background from "Damage induced to DNA by low-energy..."

  • ...increased absorption of X rays by GNPs [38,46-48]....

    [...]

Journal ArticleDOI
TL;DR: In weakly bonded matter, efficient autoionization channels have been found, in which not only the initially excited state, but also neighbouring atoms or molecules take part as discussed by the authors, which are known as Interatomic or Intermolecular Coulombic Decay (ICD).

132 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent studies on the decontamination of dry food surfaces by cold atmospheric pressure plasma (CAPP) and low energy electron beam (LEEB) is presented.
Abstract: Background Dry food products are often highly contaminated, and dry stress-resistant microorganisms, such as certain types of Salmonella and bacterial spores, can be still viable and multiply if the product is incorporated into high moisture food products or rehydrated. Traditional technologies for the decontamination of these products have certain limitations and drawbacks, such as alterations of product quality, environmental impacts, carcinogenic potential and/or lower consumer acceptance. Cold atmospheric pressure plasma (CAPP) and low energy electron beam (LEEB) are two promising innovative technologies for microbial inactivation on dry food surfaces, which have shown potential to solve these certain limitations. Scope and approach This review critically summarizes recent studies on the decontamination of dry food surfaces by CAPP and LEEB. Furthermore, proposed inactivation mechanisms, product-process interactions, current limitations and upscaling potential, as well as future trends and research needs for both emerging technologies, are discussed. Key findings and conclusions CAPP and LEEB are nonthermal technologies with a high potential for the gentle decontamination of dry food surfaces. Both technologies have similarities in their inactivation mechanisms. Due to the limited penetration depth of both technologies, product-process interactions can be minimized by maintaining product quality. A first demonstrator with Technology Readiness Level (TRL) 7 for LEEB has already been introduced into the food industry for the decontamination of herbs and spices. Compared with LEEB, CAPP is at the advanced development stage with TRL 5, for which further work is essential to design systems that are scalable to industrial requirements.

123 citations

References
More filters
Book ChapterDOI
08 May 2008
TL;DR: In this paper, the authors demonstrate the likely involvement of stable nucleobases anions in the formation of DNA strand breaks, a concept which the radiation research community has not focused on so far.
Abstract: The last decade has witnessed immense advances in our understanding of the effects of ionizing radiation on biological systems. As the genetic information carrier in biological systems, DNA is the most important species which is prone to damage by high energy photons. Ionizing radiations destroy DNA indirectly by forming low energy electrons (LEEs) as secondary products of the interaction between ionizing radiation and water. An understanding of the mechanism that leads to the formation of single and double strand breaks may be important in guiding the further development of anticancer radiation therapy. In this article we demonstrate the likely involvement of stable nucleobases anions in the formation of DNA strand breaks – a concept which the radiation research community has not focused on so far. In Section refch21:sec21.1 we discuss the current status of studies related to the interaction between DNA and LEEs. The next section is devoted to the description of proton transfer induced by electron attachment to the complexes between nucleobases and various proton donors – a process leading to the strong stabilization of nucleobases anions. Then, we review our results concerning the anionic binary complexes of nucleobases with particular emphasize on the GC and AT systems. Next, the possible consequences of interactions between DNA and proteins in the context of electron attachment are briefly discussed. Further, we focus on existing proposal of single strand break formation in DNA. Ultimately, open questions as well perspectives of studies on electron induced DNA damage are discussed

15 citations

Journal ArticleDOI
TL;DR: In this paper, the consequences of photoionisation in couche K du carbone de l'ADN were investigated, and a facteur de 1.2 a ete mesure entre les doses necessaires a 250 eV and 380 eV for produire le meme nombre de dsb par electrophorese.
Abstract: Dans le but d'etudier les consequences a l'echelle moleculaire d'une photoionisation en couche K du carbone de l'ADN, des depots de plasmides ont ete irradies a sec par des X ultra-mous d'energies situees de part et d'autre du seuil d'ionisation en couche interne du carbone (E K =278 eV). Les taux de cassures simple- et double-brin (ssb et dsb) ont ete quantifiees apres resolution des trois formes de plasmide (surenroule, circulaire relache, lineaire) par electrophorese. Un facteur de 1.2 a ete mesure entre les doses necessaires a 250 eV et 380 eV pour produire le meme nombre de dsb par plasmide.

9 citations

Frequently Asked Questions (1)
Q1. What are the contributions in "Damage induced to dna by low-energy (0-30 ev) electrons under vacuum and atmospheric conditions" ?

Brun et al. this paper showed that photoelectrons emitted from a gold substrate can be used as a source of low-energy electrons ( LEEs ) to irradiate DNA films under atmospheric conditions.