scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Data Collection in Wireless Sensor Networks with Mobile Elements: A Survey

TL;DR: This article defines WSNs with MEs and provides a comprehensive taxonomy of their architectures, based on the role of the MEs, and provides an extensive survey of the related literature.
Abstract: Wireless sensor networks (WSNs) have emerged as an effective solution for a wide range of applications. Most of the traditional WSN architectures consist of static nodes which are densely deployed over a sensing area. Recently, several WSN architectures based on mobile elements (MEs) have been proposed. Most of them exploit mobility to address the problem of data collection in WSNs. In this article we first define WSNs with MEs and provide a comprehensive taxonomy of their architectures, based on the role of the MEs. Then we present an overview of the data collection process in such a scenario, and identify the corresponding issues and challenges. On the basis of these issues, we provide an extensive survey of the related literature. Finally, we compare the underlying approaches and solutions, with hints to open problems and future research directions.
Citations
More filters
Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations

Journal ArticleDOI
TL;DR: This paper presents the key features and the driver technologies of IoT, and identifies the application scenarios and the correspondent potential applications, and focuses on research challenges and open issues to be faced for the IoT realization in the real world.

1,178 citations


Cites background from "Data Collection in Wireless Sensor ..."

  • ..., greedy solutions [178], EtE [179], BGR [180], VCCSR [48]) use nodes positions to build network paths, but geographical information is difficult to maintain in mobile networks; and (iii) protocols with mobile sinks/ data collectors [181,42] use additional mobile elements (e....

    [...]

Journal ArticleDOI
TL;DR: This survey gives an overview of wireless sensor networks and their application domains including the challenges that should be addressed in order to push the technology further and identifies several open research issues that need to be investigated in future.
Abstract: Wireless sensor network (WSN) has emerged as one of the most promising technologies for the future. This has been enabled by advances in technology and availability of small, inexpensive, and smart sensors resulting in cost effective and easily deployable WSNs. However, researchers must address a variety of challenges to facilitate the widespread deployment of WSN technology in real-world domains. In this survey, we give an overview of wireless sensor networks and their application domains including the challenges that should be addressed in order to push the technology further. Then we review the recent technologies and testbeds for WSNs. Finally, we identify several open research issues that need to be investigated in future. Our survey is different from existing surveys in that we focus on recent developments in wireless sensor network technologies. We review the leading research projects, standards and technologies, and platforms. Moreover, we highlight a recent phenomenon in WSN research that is to explore synergy between sensor networks and other technologies and explain how this can help sensor networks achieve their full potential. This paper intends to help new researchers entering the domain of WSNs by providing a comprehensive survey on recent developments.

922 citations

Journal ArticleDOI
TL;DR: A comprehensive taxonomy of the various energy harvesting sources that can be used by WSNs is presented and some of the challenges still need to be addressed to develop cost-effective, efficient, and reliable energy harvesting systems for the WSN environment are identified.
Abstract: Recently, Wireless Sensor Networks (WSNs) have attracted lot of attention due to their pervasive nature and their wide deployment in Internet of Things, Cyber Physical Systems, and other emerging areas. The limited energy associated with WSNs is a major bottleneck of WSN technologies. To overcome this major limitation, the design and development of efficient and high performance energy harvesting systems for WSN environments are being explored. We present a comprehensive taxonomy of the various energy harvesting sources that can be used by WSNs. We also discuss various recently proposed energy prediction models that have the potential to maximize the energy harvested in WSNs. Finally, we identify some of the challenges that still need to be addressed to develop cost-effective, efficient, and reliable energy harvesting systems for the WSN environment.

914 citations

Journal ArticleDOI
TL;DR: A top-down survey of the trade-offs between application requirements and lifetime extension that arise when designing wireless sensor networks is presented and a new classification of energy-conservation schemes found in the recent literature is presented.

785 citations

References
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Book
01 Aug 2006
TL;DR: Looking for competent reading resources?
Abstract: Looking for competent reading resources? We have pattern recognition and machine learning information science and statistics to read, not only read, but also download them or even check out online. Locate this fantastic book writtern by by now, simply here, yeah just here. Obtain the reports in the kinds of txt, zip, kindle, word, ppt, pdf, as well as rar. Once again, never ever miss to review online and download this book in our site right here. Click the link.

8,923 citations

Journal ArticleDOI
TL;DR: Central issues of reinforcement learning are discussed, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state.
Abstract: This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word "reinforcement." The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.

6,895 citations

Posted Content
TL;DR: A survey of reinforcement learning from a computer science perspective can be found in this article, where the authors discuss the central issues of RL, including trading off exploration and exploitation, establishing the foundations of RL via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state.
Abstract: This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.

5,970 citations

01 Oct 2003
TL;DR: The Optimized Link State Routing protocol is an optimization of the classical link state algorithm tailored to the requirements of a mobile wireless LAN and provides optimal routes (in terms of number of hops).
Abstract: This document describes the Optimized Link State Routing (OLSR) protocol for mobile ad hoc networks. The protocol is an optimization of the classical link state algorithm tailored to the requirements of a mobile wireless LAN. The key concept used in the protocol is that of multipoint relays (MPRs). MPRs are selected nodes which forward broadcast messages during the flooding process. This technique substantially reduces the message overhead as compared to a classical flooding mechanism, where every node retransmits each message when it receives the first copy of the message. In OLSR, link state information is generated only by nodes elected as MPRs. Thus, a second optimization is achieved by minimizing the number of control messages flooded in the network. As a third optimization, an MPR node may chose to report only links between itself and its MPR selectors. Hence, as contrary to the classic link state algorithm, partial link state information is distributed in the network. This information is then used for route calculation. OLSR provides optimal routes (in terms of number of hops). The protocol is particularly suitable for large and dense networks as the technique of MPRs works well in this context.

5,442 citations