scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Data Reduction and Error Analysis for the Physical Sciences.

TL;DR: Numerical methods matrices graphs and tables histograms and graphs computer routines in Pascal and Monte Carlo techniques dependent and independent variables least-squares fit to a polynomial least-square fit to an arbitrary function fitting composite peaks direct application of the maximum likelihood.
Abstract: Uncertainties in measurements probability distributions error analysis estimates of means and errors Monte Carlo techniques dependent and independent variables least-squares fit to a polynomial least-squares fit to an arbitrary function fitting composite peaks direct application of the maximum likelihood. Appendices: numerical methods matrices graphs and tables histograms and graphs computer routines in Pascal.
Citations
More filters
Journal ArticleDOI
TL;DR: Calibration methods and software have been developed for single crystal diffraction experiments, using both approaches for calibrate, and apply corrections, to obtain accurate angle and intensity information.
Abstract: Detector systems introduce distortions into acquired data. To obtain accurate angle and intensity information, it is necessary to calibrate, and apply corrections. Intensity non-linearity, spatial distortion, and non-uniformity of intensity response, are the primary considerations. It is better to account for the distortions within scientific analysis software, but often it is more practical to correct the distortions to produce ‘idealised’ data. Calibration methods and software have been developed for single crystal diffraction experiments, using both approaches. For powder diffraction experiments the additional task of converting a two-dimensional image to a one-dimensional spectrum is used to allow Rietveld analysis. This task may be combined with distortion correction to produce intensity information and error estimates. High-pressure experiments can introduce additional complications and place new demands on software. Flexibility is needed to be able to integrate different angular regions se...

4,426 citations

Journal Article
TL;DR: The clonogenic assay was more sensitive when continuous drug exposures were utilized, although this was primarily related to the increased drug exposure time, and therefore it offers a valid, simple method of assessing chemosensitivity in established cell lines.
Abstract: Drug sensitivity assays were performed using a variation of a colorimetric [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)] assay on V79, CHO-AuxB1, CHRC5, NCI-H460, and NCI-H249 cell lines following optimization of experimental conditions for each cell line. Results from this assay were compared with data assimilated simultaneously by clonogenic assay and by dye exclusion assay. Good correlation was observed using the CHO-AuxB1 cell line and the pleiotropic drug-resistant mutant CHRC5, with similar degrees of relative resistance observed with both the MTT and clonogenic assays. Good correlation was observed between the clonogenic and MTT assays for 1-h drug exposures, although the MTT assay was more sensitive to vinblastine. In general, the clonogenic assay was more sensitive when continuous drug exposures were utilized, although this was primarily related to the increased drug exposure time. While the use of the MTT assay in drug sensitivity testing of primary tumor samples is limited, since contaminating normal cells may also reduce the tetrazolium, the MTT assay can be semiautomated, and therefore it offers a valid, simple method of assessing chemosensitivity in established cell lines.

3,896 citations


Cites methods from "Data Reduction and Error Analysis f..."

  • ...Standard errors were calculated according to the method of Bevington ( 26 ) which takes into account the error for each experimental point...

    [...]

Journal ArticleDOI
TL;DR: A new titration calorimeter is described and results are presented for the binding of cytidine 2'-monophosphate (2'CMP) to the active site of ribonuclease A.

2,561 citations

Journal ArticleDOI
TL;DR: New indices calculated from the entire diffusion tensor are rotationally invariant (RI) and show that anisotropy is highly variable in different white matter regions depending on the degree of coherence of fiber tract directions.
Abstract: Indices of diffusion anisotropy calculated from diffusion coefficients acquired in two or three perpendicular directions are rotationally variant. In living monkey brain, these indices severely underestimate the degree of diffusion anisotropy. New indices calculated from the entire diffusion tensor are rotationally invariant (RI). They show that anisotropy is highly variable in different white matter regions depending on the degree of coherence of fiber tract directions. In structures with a regular, parallel fiber arrangement, water diffusivity in the direction parallel to the fibers (Dparallel approximately 1400-1800 x 10(-6) mm2/s) is almost 10 times higher than the average diffusivity in directions perpendicular to them (D + D)/2 [corrected] approximately 150-300 x 10(-6) mm2/s), and is almost three times higher than previously reported. In structures where the fiber pattern is less coherent (e.g., where fiber bundles merge), diffusion anisotropy is significantly reduced. However, RI anisotropy indices are still susceptible to noise contamination. Monte Carlo simulations show that these indices are statistically biased, particularly those requiring sorting of the eigenvalues of the diffusion tensor based on their magnitude. A new intervoxel anisotropy index is proposed that locally averages inner products between diffusion tensors in neighboring voxels. This "lattice" RI index has an acceptably low error variance and is less susceptible to bias than any other RI anisotropy index proposed to date.

2,504 citations


Cites methods from "Data Reduction and Error Analysis f..."

  • ...This was done to correct the bias in the experimental variance introduced by taking the logarithm of the measured amplitude signal (20)....

    [...]

Journal ArticleDOI
TL;DR: USNO-B is an all-sky catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,042,618,261 objects derived from 3,643,201,733 separate observations as mentioned in this paper.
Abstract: USNO-B is an all-sky catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,042,618,261 objects derived from 3,643,201,733 separate observations. The data were obtained from scans of 7435 Schmidt plates taken for the various sky surveys during the last 50 years. USNO-B1.0 is believed to provide all-sky coverage, completeness down to V = 21, 02 astrometric accuracy at J2000, 0.3 mag photometric accuracy in up to five colors, and 85% accuracy for distinguishing stars from nonstellar objects. A brief discussion of various issues is given here, but the actual data are available from the US Naval Observatory Web site and others.

2,502 citations