scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform

01 Oct 1971-IEEE Transactions on Communications (IEEE)-Vol. 19, Iss: 5, pp 628-634
TL;DR: The Fourier transform data communication system is described and the effects of linear channel distortion are investigated and a differential phase modulation scheme is presented that obviates any equalization.
Abstract: The Fourier transform data communication system is a realization of frequency-division multiplexing (FDM) in which discrete Fourier transforms are computed as part of the modulation and demodulation processes. In addition to eliminating the bunks of subcarrier oscillators and coherent demodulators usually required in FDM systems, a completely digital implementation can be built around a special-purpose computer performing the fast Fourier transform. In this paper, the system is described and the effects of linear channel distortion are investigated. Signal design criteria and equalization algorithms are derived and explained. A differential phase modulation scheme is presented that obviates any equalization.
Citations
More filters
Journal ArticleDOI
TL;DR: The general technique of parallel transmission on many carriers, called multicarrier modulation (MCM), is explained, and the performance that can be achieved on an undistorted channel and algorithms for achieving that performance are discussed.
Abstract: The general technique of parallel transmission on many carriers, called multicarrier modulation (MCM), is explained. The performance that can be achieved on an undistorted channel and algorithms for achieving that performance are discussed. Ways of dealing with channel impairments and of improving the performance through coding are described, and implementation methods are considered. Duplex operation of MCM and the possible use of this on the general switched telephone network are examined. >

3,995 citations

Journal ArticleDOI
Jr. L.J. Cimini1
TL;DR: The analysis and simulation of a technique for combating the effects of multipath propagation and cochannel interference on a narrow-band digital mobile channel using the discrete Fourier transform to orthogonally frequency multiplex many narrow subchannels, each signaling at a very low rate, into one high-rate channel is discussed.
Abstract: This paper discusses the analysis and simulation of a technique for combating the effects of multipath propagation and cochannel interference on a narrow-band digital mobile channel. This system uses the discrete Fourier transform to orthogonally frequency multiplex many narrow subchannels, each signaling at a very low rate, into one high-rate channel. When this technique is used with pilot-based correction, the effects of flat Rayleigh fading can be reduced significantly. An improvement in signal-to-interference ratio of 6 dB can be obtained over the bursty Rayleigh channel. In addition, with each subchannel signaling at a low rate, this technique can provide added protection against delay spread. To enhance the behavior of the technique in a heavily frequency-selective environment, interpolated pilots are used. A frequency offset reference scheme is employed for the pilots to improve protection against cochannel interference.

2,627 citations

Journal ArticleDOI
TL;DR: It is shown, and confirmed by simulation, that to maintain signal-to-interference ratios of 20 dB or greater for the OFDM carriers, offset is limited to 4% or less of the intercarrier spacing.
Abstract: This paper discusses the effects of frequency offset on the performance of orthogonal frequency division multiplexing (OFDM) digital communications. The main problem with frequency offset is that it introduces interference among the multiplicity of carriers in the OFDM signal. It is shown, and confirmed by simulation, that to maintain signal-to-interference ratios of 20 dB or greater for the OFDM carriers, offset is limited to 4% or less of the intercarrier spacing. Next, the paper describes a technique to estimate frequency offset using a repeated data symbol. A maximum likelihood estimation (MLE) algorithm is derived and its performance computed and compared with simulation results. Since the intercarrier interference energy and signal energy both contribute coherently to the estimate, the algorithm generates extremely accurate estimates even when the offset is far too great to demodulate the data values. Also, the estimation error depends only on total symbol energy so it is insensitive to channel spreading and frequency selective fading. A strategy is described for initial acquisition in the event of uncertainty in the initial offset that exceeds 1/2 the carrier spacing, the limit of the MLE algorithm. >

2,475 citations


Cites methods from "Data Transmission by Frequency-Divi..."

  • ...Fortunately, this synthesis can be accomplished perfectly, in principle, utilizing the discrete Fourier ttansform (dft) as first described by Darlington [2] and later, for data modems, by Weinstein and Ebert [ 3 ]....

    [...]

Journal ArticleDOI
TL;DR: Some of the important PAPR reduction techniques for multicarrier transmission including amplitude clipping and filtering, coding, partial transmit sequence, selected mapping, interleaving, tone reservation, tone injection, and active constellation extension are described.
Abstract: High peak-to-average power ratio of the transmit signal is a major drawback of multicarrier transmission such as OFDM or DMT. This article describes some of the important PAPR reduction techniques for multicarrier transmission including amplitude clipping and filtering, coding, partial transmit sequence, selected mapping, interleaving, tone reservation, tone injection, and active constellation extension. Also, we make some remarks on the criteria for PAPR reduction technique selection and briefly address the problem of PAPR reduction in OFDMA and MIMO-OFDM.

2,093 citations

Journal ArticleDOI
TL;DR: This paper shows that the presence of multipath greatly improves achievable data rate if the appropriate communication structure is employed, and an adaptive-lattice trellis-coding technique is suggested as a method for coding across the space and frequency dimensions that exist in the DMMT channel.
Abstract: Multipath signal propagation has long been viewed as an impairment to reliable communication in wireless channels. This paper shows that the presence of multipath greatly improves achievable data rate if the appropriate communication structure is employed. A compact model is developed for the multiple-input multiple-output (MIMO) dispersive spatially selective wireless communication channel. The multivariate information capacity is analyzed. For high signal-to-noise ratio (SNR) conditions, the MIMO channel can exhibit a capacity slope in bits per decibel of power increase that is proportional to the minimum of the number multipath components, the number of input antennas, or the number of output antennas. This desirable result is contrasted with the lower capacity slope of the well-studied case with multiple antennas at only one side of the radio link. A spatio-temporal vector-coding (STVC) communication structure is suggested as a means for achieving MIMO channel capacity. The complexity of STVC motivates a more practical reduced-complexity discrete matrix multitone (DMMT) space-frequency coding approach. Both of these structures are shown to be asymptotically optimum. An adaptive-lattice trellis-coding technique is suggested as a method for coding across the space and frequency dimensions that exist in the DMMT channel. Experimental examples that support the theoretical results are presented.

1,593 citations

References
More filters
Journal ArticleDOI
B. Saltzberg1
TL;DR: A parallel quadrature AM data transmission system with a number of overlapping channels, each carrying a signaling rateb, spacedb/2apart in frequency appears to be a promising technique for achieving good performance at high information rates over bandlimited dispersive transmission media.
Abstract: A parallel quadrature AM data transmission system may be implemented with a number of overlapping channels, each carrying a signaling rate b , spaced b/2 apart in frequency. When a large number of channels are used, the system allows transmission speeds very close to the Nyquist rate, with little sensitivity to delay and amplitude distortion of the transmission medium. The receiver requires precise phasing of the demodulating carriers and sampling times in order to keep crosstalk between channels small. In the presence of delay and amplitude distortion, better results are obtained when half cosine roll-offs are used for shaping each channel than for full cosine roll-off. This transmission scheme appears to be a promising technique for achieving good performance at high information rates over bandlimited dispersive transmission media.

972 citations

Journal ArticleDOI
R. Chang1, R. Gibby
TL;DR: This paper presents a theoretical analysis of the performance of an orthogonal multiplexing data transmission scheme (parallel transmission scheme) subject to a number of degrading factors normally encountered by a practical operating system.
Abstract: This paper presents a theoretical analysis of the performance of an orthogonal multiplexing data transmission scheme (parallel transmission scheme) subject to a number of degrading factors normally encountered by a practical operating system. The factors considered jointly are sampling time error, carrier phase offset, and nonideal phase characteristics of transmitting and receiving filters. Performance is measured by the familiar criterion of eye opening of the received data signal. A closed-form expression for the eye opening is obtained. It is shown that the lengthy nonlinear functions in the solution can be closely approximated by simple piecewise linear functions for parameter values of interest. The optimum settings of the sampling time and the carrier phase are determined for given filter phase distortion. Also, considering all factors, simple formulas are developed for computing interchannel interferences, intersymbol interference, and the resulting eye opening. Simple relationships between the eye opening and filter phase distortion are explored, and a concept of parametric eye is introduced to aid in filter design. An illustrative example is considered which shows that the impairment of the system performance is not excessive for a reasonable range of system design parameters.

384 citations

Journal ArticleDOI
01 May 1957
TL;DR: The linearity and highly stable frequency characteristics of modern single-sideband equipment make possible improvements in the frequency spectrum utilization and performance of binary data transmission systems.
Abstract: The linearity and highly stable frequency characteristics of modern single-sideband equipment make possible improvements in the frequency spectrum utilization and performance of binary data transmission systems. Problems associated with fully utilizing the binary data transmission potential of an SSB voice channel are discussed. These problems include consideration of frequency and phase stability of the SSB equipment and the propagation media, multipath reception of signals, delay distortion within the voice channel, maximum performance in the presence of noise, and maximum spectrum utilization. Equipment designed to transmit 3000 bits per second over a SSB voice channel is described. Comparative performance data with standard systems are included.

167 citations

Journal ArticleDOI
TL;DR: The AN/GSC-10 (KATHRYN) is a new modem equipment for digital data transmission on HF radio circuits that provides a wide range of signal redundancy and data rate to allow optimum performance over the correspondingly widerange of propagation conditions characteristic of HF radio.
Abstract: The AN/GSC-10 (KATHRYN) is a new modem equipment for digital data transmission on HF radio circuits. Its unique modulation technique provides a wide range of signal redundancy and data rate to allow optimum performance over the correspondingly wide range of propagation conditions characteristic of HF radio. Efficient detection is achieved at all levels of redundancy by utilizing a fully coherent correlation detection technique. The detector is a continually self-adjusting matched filter to the timevarying ionospheric transfer function. The fine grain propagation data derived for detection allow continuous observation of parameters such as multipath delay and coherence time. As a variable data rate modem with channel measurement capabilities, it can serve in future fully adaptive communication nets.

127 citations

Proceedings ArticleDOI
J. Salz1, S. B. Weinstein1
13 Oct 1969
TL;DR: A data transmission system in which the transmitted signal is the Fourier transform of the original data sequence and the demodulator is a discrete Fourier transformer, and it is shown, via computer simulation and computation of the variances of errors, how the system corrects linear channel distortion.
Abstract: The development of rapid algorithms for computation of the discrete Fourier transform has encouraged the use of this transform in the design of communication systems. Here we describe and analyze a data transmission system in which the transmitted signal is the Fourier transform of the original data sequence and the demodulator is a discrete Fourier transformer. This system is a realization of the frequency division multiplexing strategy known as “parallel data transmission”, and it is constructed in this manner so that the data demodulator, after analog to digital conversion, may be a computer program employing one of the fast Fourier transform algorithms. The system appears attractive in that it may be entirely implemented by digital circuitry. We study the performance of this system in the presence of typical linear channel characteristics. It is shown, via computer simulation and computation of the variances of errors, how the system corrects linear channel distortion.

59 citations