scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Decentralized Q-Learning for Stochastic Teams and Games

01 Apr 2017-IEEE Transactions on Automatic Control (IEEE)-Vol. 62, Iss: 4, pp 1545-1558
TL;DR: In this article, decentralized Q-learning algorithms for stochastic games are presented, and their convergence for weakly acyclic case is studied for team problems as an important special case, where each decision maker has access only to its own decisions and cost realizations as well as state transitions.
Abstract: There are only a few learning algorithms applicable to stochastic dynamic teams and games which generalize Markov decision processes to decentralized stochastic control problems involving possibly self-interested decision makers. Learning in games is generally difficult because of the non-stationary environment in which each decision maker aims to learn its optimal decisions with minimal information in the presence of the other decision makers who are also learning. In stochastic dynamic games, learning is more challenging because, while learning, the decision makers alter the state of the system and hence the future cost. In this paper, we present decentralized Q-learning algorithms for stochastic games, and study their convergence for the weakly acyclic case which includes team problems as an important special case. The algorithms are decentralized in that each decision maker has access only to its own decisions and cost realizations as well as the state transitions; in particular, each decision maker is completely oblivious to the presence of the other decision makers. We show that these algorithms converge to equilibrium policies almost surely in large classes of stochastic games.
Citations
More filters
Book ChapterDOI
TL;DR: This chapter reviews the theoretical results of MARL algorithms mainly within two representative frameworks, Markov/stochastic games and extensive-form games, in accordance with the types of tasks they address, i.e., fully cooperative, fully competitive, and a mix of the two.
Abstract: Recent years have witnessed significant advances in reinforcement learning (RL), which has registered tremendous success in solving various sequential decision-making problems in machine learning. Most of the successful RL applications, e.g., the games of Go and Poker, robotics, and autonomous driving, involve the participation of more than one single agent, which naturally fall into the realm of multi-agent RL (MARL), a domain with a relatively long history, and has recently re-emerged due to advances in single-agent RL techniques. Though empirically successful, theoretical foundations for MARL are relatively lacking in the literature. In this chapter, we provide a selective overview of MARL, with focus on algorithms backed by theoretical analysis. More specifically, we review the theoretical results of MARL algorithms mainly within two representative frameworks, Markov/stochastic games and extensive-form games, in accordance with the types of tasks they address, i.e., fully cooperative, fully competitive, and a mix of the two. We also introduce several significant but challenging applications of these algorithms. Orthogonal to the existing reviews on MARL, we highlight several new angles and taxonomies of MARL theory, including learning in extensive-form games, decentralized MARL with networked agents, MARL in the mean-field regime, (non-)convergence of policy-based methods for learning in games, etc. Some of the new angles extrapolate from our own research endeavors and interests. Our overall goal with this chapter is, beyond providing an assessment of the current state of the field on the mark, to identify fruitful future research directions on theoretical studies of MARL. We expect this chapter to serve as continuing stimulus for researchers interested in working on this exciting while challenging topic.

692 citations

Posted Content
TL;DR: This work provides a self-contained assessment of the current state-of-the-art MARL techniques from a game theoretical perspective and expects this work to serve as a stepping stone for both new researchers who are about to enter this fast-growing domain and existing domain experts who want to obtain a panoramic view and identify new directions based on recent advances.
Abstract: Following the remarkable success of the AlphaGO series, 2019 was a booming year that witnessed significant advances in multi-agent reinforcement learning (MARL) techniques. MARL corresponds to the learning problem in a multi-agent system in which multiple agents learn simultaneously. It is an interdisciplinary domain with a long history that includes game theory, machine learning, stochastic control, psychology, and optimisation. Although MARL has achieved considerable empirical success in solving real-world games, there is a lack of a self-contained overview in the literature that elaborates the game theoretical foundations of modern MARL methods and summarises the recent advances. In fact, the majority of existing surveys are outdated and do not fully cover the recent developments since 2010. In this work, we provide a monograph on MARL that covers both the fundamentals and the latest developments in the research frontier. The goal of our monograph is to provide a self-contained assessment of the current state-of-the-art MARL techniques from a game theoretical perspective. We expect this work to serve as a stepping stone for both new researchers who are about to enter this fast-growing domain and existing domain experts who want to obtain a panoramic view and identify new directions based on recent advances.

103 citations

Proceedings ArticleDOI
01 Dec 2018
TL;DR: This paper proposes a fully decentralized actor-critic algorithm that only relies on neighbor-to-neighbor communications among agents in a networked multi-agent reinforcement learning setting, and adopts the newly proposed expected policy gradient to reduce the variance of the gradient estimate.
Abstract: Many real-world tasks on practical control systems involve the learning and decision-making of multiple agents, under limited communications and observations. In this paper, we study the problem of networked multi-agent reinforcement learning (MARL), where multiple agents perform reinforcement learning in a common environment, and are able to exchange information via a possibly time-varying communication network. In particular, we focus on a collaborative MARL setting where each agent has individual reward functions, and the objective of all the agents is to maximize the network-wide averaged long-term return. To this end, we propose a fully decentralized actor-critic algorithm that only relies on neighbor-to-neighbor communications among agents. To promote the use of the algorithm on practical control systems, we focus on the setting with continuous state and action spaces, and adopt the newly proposed expected policy gradient to reduce the variance of the gradient estimate. We provide convergence guarantees for the algorithm when linear function approximation is employed, and corroborate our theoretical results via simulations.

93 citations

Proceedings Article
01 Jan 2020
TL;DR: It is shown that if both players run policy gradient methods in tandem, their policies will converge to a min-max equilibrium of the game, as long as their learning rates follow a two-timescale rule.
Abstract: We obtain global, non-asymptotic convergence guarantees for independent learning algorithms in competitive reinforcement learning settings with two agents (i.e., zero-sum stochastic games). We consider an episodic setting where in each episode, each player independently selects a policy and observes only their own actions and rewards, along with the state. We show that if both players run policy gradient methods in tandem, their policies will converge to a min-max equilibrium of the game, as long as their learning rates follow a two-timescale rule (which is necessary). To the best of our knowledge, this constitutes the first finite-sample convergence result for independent policy gradient methods in competitive RL; prior work has largely focused on centralized, coordinated procedures for equilibrium computation.

85 citations

Posted Content
TL;DR: In this paper, the authors consider the problem of fully decentralized multi-agent reinforcement learning (MARL), where the agents are located at the nodes of a time-varying communication network.
Abstract: We consider the problem of \emph{fully decentralized} multi-agent reinforcement learning (MARL), where the agents are located at the nodes of a time-varying communication network. Specifically, we assume that the reward functions of the agents might correspond to different tasks, and are only known to the corresponding agent. Moreover, each agent makes individual decisions based on both the information observed locally and the messages received from its neighbors over the network. Within this setting, the collective goal of the agents is to maximize the globally averaged return over the network through exchanging information with their neighbors. To this end, we propose two decentralized actor-critic algorithms with function approximation, which are applicable to large-scale MARL problems where both the number of states and the number of agents are massively large. Under the decentralized structure, the actor step is performed individually by each agent with no need to infer the policies of others. For the critic step, we propose a consensus update via communication over the network. Our algorithms are fully incremental and can be implemented in an online fashion. Convergence analyses of the algorithms are provided when the value functions are approximated within the class of linear functions. Extensive simulation results with both linear and nonlinear function approximations are presented to validate the proposed algorithms. Our work appears to be the first study of fully decentralized MARL algorithms for networked agents with function approximation, with provable convergence guarantees.

77 citations

References
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book
15 Apr 1994
TL;DR: Puterman as discussed by the authors provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models, focusing primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous time discrete state models.
Abstract: From the Publisher: The past decade has seen considerable theoretical and applied research on Markov decision processes, as well as the growing use of these models in ecology, economics, communications engineering, and other fields where outcomes are uncertain and sequential decision-making processes are needed. A timely response to this increased activity, Martin L. Puterman's new work provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models. It discusses all major research directions in the field, highlights many significant applications of Markov decision processes models, and explores numerous important topics that have previously been neglected or given cursory coverage in the literature. Markov Decision Processes focuses primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous-time discrete state models. The book is organized around optimality criteria, using a common framework centered on the optimality (Bellman) equation for presenting results. The results are presented in a "theorem-proof" format and elaborated on through both discussion and examples, including results that are not available in any other book. A two-state Markov decision process model, presented in Chapter 3, is analyzed repeatedly throughout the book and demonstrates many results and algorithms. Markov Decision Processes covers recent research advances in such areas as countable state space models with average reward criterion, constrained models, and models with risk sensitive optimality criteria. It also explores several topics that have received little or no attention in other books, including modified policy iteration, multichain models with average reward criterion, and sensitive optimality. In addition, a Bibliographic Remarks section in each chapter comments on relevant historic

11,625 citations

Journal ArticleDOI
TL;DR: This paper presents and proves in detail a convergence theorem forQ-learning based on that outlined in Watkins (1989), showing that Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action- values are represented discretely.
Abstract: \cal Q-learning (Watkins, 1989) is a simple way for agents to learn how to act optimally in controlled Markovian domains. It amounts to an incremental method for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states. This paper presents and proves in detail a convergence theorem for \cal Q-learning based on that outlined in Watkins (1989). We show that \cal Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action-values are represented discretely. We also sketch extensions to the cases of non-discounted, but absorbing, Markov environments, and where many \cal Q values can be changed each iteration, rather than just one.

8,450 citations

Book
01 Jan 1998
TL;DR: Fudenberg and Levine as discussed by the authors developed an alternative explanation that equilibrium arises as the long-run outcome of a process in which less than fully rational players grope for optimality over time.
Abstract: In economics, most noncooperative game theory has focused on equilibrium in games, especially Nash equilibrium and its refinements. The traditional explanation for when and why equilibrium arises is that it results from analysis and introspection by the players in a situation where the rules of the game, the rationality of the players, and the players' payoff functions are all common knowledge. Both conceptually and empirically, this theory has many problems. In The Theory of Learning in Games Drew Fudenberg and David Levine develop an alternative explanation that equilibrium arises as the long-run outcome of a process in which less than fully rational players grope for optimality over time. The models they explore provide a foundation for equilibrium theory and suggest useful ways for economists to evaluate and modify traditional equilibrium concepts.

3,254 citations

Journal ArticleDOI
01 Jan 1962
TL;DR: Adaptive Control Processes: A Guided Tour as mentioned in this paper is a guidebook for guided tours of control processes, with a focus on adaptive control processes, and a description of the tour.
Abstract: The description for this book, Adaptive Control Processes: A Guided Tour, will be forthcoming.

2,678 citations

Trending Questions (1)
Does distributed Q-learning share similarities to Independent Q-learning?

Yes, decentralized Q-learning in stochastic games, as discussed in the paper, is similar to Independent Q-learning as both involve self-interested decision makers learning optimal decisions in non-stationary environments.