scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Decoupling Capacitors Placement at Board Level Adopting a Nature-Inspired Algorithm

29 Jun 2019-Electronics (Multidisciplinary Digital Publishing Institute)-Vol. 8, Iss: 7, pp 737
TL;DR: The capacitance value and the location of three decoupling capacitors are optimized in order to obtain an input impedance below a specific mask, by using a nature-inspired algorithm, the genetic one, in combination with two electromagnetic solvers used to compute the objective function.
Abstract: Decoupling capacitors are fundamental keys for the reduction of transient noise in power delivery networks; their arrangement and values are crucial for reaching this goal. This work deals with the optimization of the decoupling capacitors of a power delivery network by using a nature-inspired algorithm. In particular, the capacitance value and the location of three decoupling capacitors are optimized in order to obtain an input impedance below a specific mask, by using a nature-inspired algorithm, the genetic one, in combination with two electromagnetic solvers used to compute the objective function. An experimental board is designed and manufactured; measurements are performed to validate the numerical results.
Citations
More filters
Proceedings ArticleDOI
01 Jul 2020
TL;DR: An optimization algorithm for accordingly placing decoupling capacitors one-by-one and iteratively evaluating the cost function of each PDN design solution is proposed, leading to a decap configuration that effectively takes into account the decap value, the parasitics inductance, and the decap location.
Abstract: The current demand in Power Distribution Network (PDN) design is characterized by the accurate placement of decoupling capacitors and the minimization of their number aimed at cost saving. The paper proposes an optimization algorithm for accordingly placing decoupling capacitors one-by-one and iteratively evaluating the cost function of each PDN design solution. This allows the designer to identify the minimum number of decaps whenever the input impedance satisfies the target impedance requirements. The algorithm is based on the Genetic Algorithm accordingly adapted for the specific application of PDN design. It may involve the evaluation of the input impedance at multiple locations, representing either multiple ICs, as well as multiple power input areas/pins of the same IC. The validation of the developed optimization algorithm is carried out by applying it to a manufactured PCB and by employing typical (low inductance) decaps for PDN design. The optimization process led to a decap configuration that effectively takes into account the decap value, the parasitics inductance, and the decap location. An accurate experimental test further validates the optimized PDN.

17 citations

Journal ArticleDOI
TL;DR: An iterative optimization for decoupling capacitor placement on a power delivery network (PDN) is presented based on Genetic Algorithm and Artificial Neural Network to effectively provide results consistent with those obtained by a longer optimization based on commercial simulators.
Abstract: An iterative optimization for decoupling capacitor placement on a power delivery network (PDN) is presented based on Genetic Algorithm (GA) and Artificial Neural Network (ANN). The ANN is first trained by an appropriate set of results obtained by a commercial simulator. Once the ANN is ready, it is used within an iterative GA process to place a minimum number of decoupling capacitors for minimizing the differences between the input impedance at one or more location, and the required target impedance. The combined GA–ANN process is shown to effectively provide results consistent with those obtained by a longer optimization based on commercial simulators. With the new approach the accuracy of the results remains at the same level, but the computational time is reduced by at least 30 times. Two test cases have been considered for validating the proposed approach, with the second one also being compared by experimental measurements.

12 citations

Journal ArticleDOI
TL;DR: In this paper, a genetic algorithm is used for the optimization of the decoupling capacitors in order to obtain the frequency spectrum of the input impedance in different positions on the network, below previously defined values.
Abstract: To reduce the noise created by a power delivery network, the number, the value of decoupling capacitors and their arrangement on the board are critical to reaching this goal. This work deals with specific improvements, implemented on a genetic algorithm, which used for the optimization of the decoupling capacitors in order to obtain the frequency spectrum of the input impedance in different positions on the network, below previously defined values. Measurements are performed on a specifically manufactured board in order to validate the effectiveness of the proposed algorithm and the optimization results obtained for a specific example board.

6 citations


Cites background or methods from "Decoupling Capacitors Placement at ..."

  • ...Moreover, the low frequency portion can also be relaxed by ignoring the impact of the VRM impedance and taking into account the low frequency capacitive trend as the sum of the required total PDN capacitance [14]....

    [...]

  • ...The presents work is carried out to solve several limitations in Reference [14] by achieving a more efficient and practical optimization process....

    [...]

  • ...Although the GA developed in Reference [14] gave acceptable results, there were margins of improvements aiming to a more robust and stable algorithm capable of dealing with more complex PDN designs....

    [...]

  • ...A preliminary work by the authors in Reference [14] where the GA has been adopted for finding the optimum number and values of decaps to be mounted on a PDN of a printed circuit board....

    [...]

  • ...Although the GA developed in Reference [14] gave acceptable results, there were argins of i prove ents ai ing to a ore robust and stable algorith capable of dealing with ore co plex PDN designs....

    [...]

Journal ArticleDOI
TL;DR: In this article , a multi-port constrained optimization methodology is presented for the optimal placement of decoupling capacitors in power distribution networks (PDNs) of printed circuit boards (PCBs).
Abstract: A multi-port constrained optimization methodology is presented for the optimal placement of decoupling capacitors in power distribution networks (PDNs) of printed circuit boards (PCBs). The proposed method is based on barrier methods and can simultaneously handle multiple ball grid array (BGA) devices and capacitor ports on practical power/ground plane pairs of polygonal shapes without restriction in the problem geometry. Semi-analytical expressions are developed for the magnitude of device port impedance that is set as the objective function. The placement optimization problem including constraints of planar boundaries and impedance specifications is cast into a matrix expression that meets Karush–Kuhn Tucker (KKT) conditions and solved through Newton–Raphson (N–R) iterations. The convergence of iterations is ensured by guaranteeing the positive definiteness of the system matrix through the Levenberg–Marquardt algorithm. Mutual coupling among multiple ports and discrete components of the problem domain is accounted for via matrix calculus techniques applied to the partial derivatives of optimization variables. The derivatives are evaluated accurately exploiting the semi-analytical relations developed for the distributed planar impedance. The proposed method is tested with several examples, and the results are observed to be in good agreement with those obtained from a numerical electromagnetic (EM) simulator while yielding significant speed-up.

2 citations

DOI
12 Dec 2022
TL;DR: In this paper , the authors present a methodology to obtain the minimal number of decoupling capacitors for a 4-level hierarchical system to meet the on-chip voltage droop constraints and to optimize the location of those decoupled capacitors to meet a user-specified target impedance.
Abstract: It is increasingly challenging to satisfy the requirements placed on the power delivery network for a multilevel hierarchical system, due to aggressive voltage scaling and stringent limits on the chip-level voltage droop. This paper presents a methodology to obtain the minimal number of decoupling capacitors for a 4-level hierarchical system to meet the on-chip voltage droop constraints and to optimize the location of those decoupling capacitors to meet a user-specified target impedance. The number and location optimizations are performed using nature-based and Bayesian optimization algorithms along with the quantitative comparison of results.
References
More filters
Journal ArticleDOI
TL;DR: The comprehensive learning particle swarm optimizer (CLPSO) is presented, which uses a novel learning strategy whereby all other particles' historical best information is used to update a particle's velocity.
Abstract: This paper presents a variant of particle swarm optimizers (PSOs) that we call the comprehensive learning particle swarm optimizer (CLPSO), which uses a novel learning strategy whereby all other particles' historical best information is used to update a particle's velocity. This strategy enables the diversity of the swarm to be preserved to discourage premature convergence. Experiments were conducted (using codes available from http://www.ntu.edu.sg/home/epnsugan) on multimodal test functions such as Rosenbrock, Griewank, Rastrigin, Ackley, and Schwefel and composition functions both with and without coordinate rotation. The results demonstrate good performance of the CLPSO in solving multimodal problems when compared with eight other recent variants of the PSO.

3,217 citations

Book
16 Mar 2009
TL;DR: In this paper, the authors leverage theory and techniques from non-related fields such as applied physics, communications, and microwave engineering and apply them to the field of high-speed digital design.
Abstract: Signal integrity has become the key issue in most high-performance digital designs. Now, from the foremost experts in the field, this book leverages theory and techniques from non-related fields such as applied physics, communications, and microwave engineering and applies them to the field of high-speed digital design. This approach creates an optimal combination of theory and practice that is meaningful to practicing engineers and graduate students alike.

454 citations

Journal ArticleDOI
TL;DR: A detailed analysis of the FSV method is presented, setting it firmly in the context of previous comparison techniques; it suggests the relationship between validation of graphically presented data and the psychology of visual perception, and a set of applicability tests to judge the effectiveness of computer-based CEM validation techniques.
Abstract: A goal for the validation of computational electromagnetics (CEM) is to provide the community with a simple computational method that can be used to predict the assessment of electromagnetic compatibility (EMC) data as it would be undertaken by individuals or teams of engineers. The benefits of being able to do this include quantifying the comparison of data that has hitherto only been assessed qualitatively, to provide the ability to track differences between model iterations, and to provide a means of capturing the variability and range of opinions of groups and teams of workers. The feature selective validation (FSV) technique shows great promise for achieving this goal. This paper presents a detailed analysis of the FSV method, setting it firmly in the context of previous comparison techniques; it suggests the relationship between validation of graphically presented data and the psychology of visual perception. A set of applicability tests to judge the effectiveness of computer-based CEM validation techniques is also proposed. This paper is followed by a detailed comparison with visual assessment, which is presented in Part II

411 citations

Journal ArticleDOI
TL;DR: This paper addresses two specific issues related to the implementation of the FSV method, namely "how well does it produce results that agree with visual assessment?" and "what benefit can it provide in a practical validation environment?"
Abstract: The feature selective validation (FSV) method has been proposed as a technique to allow the objective, quantified, comparison of data for inter alia validation of computational electromagnetics. In the companion paper "Feature selective validation for validation of computational electromagnetics. Part I-The FSV method," the method was outlined in some detail. This paper addresses two specific issues related to the implementation of the FSV method, namely "how well does it produce results that agree with visual assessment?" and "what benefit can it provide in a practical validation environment?" The first of these questions is addressed by comparing the FSV output to the results of an extensive survey of EMC engineers from several countries. The second is approached via a case study analysis

357 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a strategy to characterize power and groundplane structures using a full cavity-mode frequency-domain resonator model, and introduce a novel technique to suppress modal impedances, minimizing both transfer and input impedances.
Abstract: In this paper, we describe a strategy to characterize power and ground-plane structures using a full cavity-mode frequency-domain resonator model. We develop insights into modal analysis and introduce a novel technique to suppress modal impedances, minimizing both transfer and input impedances. The influence of port locations on the Z matrix is evaluated.

305 citations