scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep face recognition: A survey

14 Mar 2021-Neurocomputing (Elsevier)-Vol. 429, pp 215-244
TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.
About: This article is published in Neurocomputing.The article was published on 2021-03-14 and is currently open access. It has received 353 citations till now. The article focuses on the topics: Deep learning & Feature extraction.
Citations
More filters
Journal ArticleDOI
TL;DR: This work presents a methodology to identify individual TR ISO-fueled pebbles by exploiting the unique distribution of the TRISO-coated particles, which is imprinted during the manufacturing process, within individual TRISO -fueledpebbles.

3 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a novel multi-view, multi-spectral 3D finger imaging system, which is capable of capturing almost all finger-based traits, such as fingerprint, finger vein, finger knuckle, finger shape, and so on.
Abstract: Fingers contain various discriminative biometric traits, such as fingerprint, finger vein, finger knuckle, finger shape, and so on, which are complementary in identity information. However, only one or a few traits are used in most current research and practical applications, while others are ignored, resulting in degraded recognition performance and vulnerability to forgery. In this paper, we make the first attempt to collect and study all biometric traits on the finger. Firstly, a novel multi-view, multi-spectral 3D finger imaging system is proposed. To the best of our knowledge, it is the first biometric imaging system capable of capturing almost all finger-based traits. We scanned numerous fingers with this 3D finger imaging system, obtaining external skin images and internal vein images from 6 different views. The proposed 3D finger reconstruction and texture mapping algorithms are then used to generate 3D finger models with skin and vein textures. Second, we establish a benchmark dataset, namely the Large-scale Finger Multi-Biometric database and benchmark for 3D Finger Biometrics (LFMB-3DFB). The LFMB-3DFB contains 695 fingers, and each finger is acquired 10 times, yielding 6 finger skin images and 6 finger vein images for a total of 83,400 images and 6,950 3D finger models. Finally, we design a more scientific and comprehensive evaluation protocol to conduct extensive experimental research and analysis on this database for both subject-independent verification and subject-independent close-set identification tasks. Comprehensive and rigorous experiments for 2D finger traits recognition, multi-view finger traits recognition, 3D finger traits recognition, and score-level fusion on LFMB-3DFB are carried out, and excellent results are achieved. The LFMB-3DFB database will be released at https://github.com/SCUT-BIP-Lab/LFMB-3DFB to promote 3D finger multi-biometric research using cutting-edge imaging techniques.

3 citations

Journal ArticleDOI
TL;DR: In this paper , the authors exploit Semi-Supervised Learning (SSL) to increase the amount of training data to improve the performance of Fine-Grained Visual Categorization (FGVC ).
Abstract: In this article, we exploit Semi-Supervised Learning ( SSL ) to increase the amount of training data to improve the performance of Fine-Grained Visual Categorization ( FGVC ). This problem has not been investigated in the past in spite of prohibitive annotation costs that FGVC requires. Our approach leverages unlabeled data with an adversarial optimization strategy in which the internal features representation is obtained with a second-order pooling model. This combination allows one to back-propagate the information of the parts, represented by second-order pooling, onto unlabeled data in an adversarial training setting. We demonstrate the effectiveness of the combined use by conducting experiments on six state-of-the-art fine-grained datasets, which include Aircrafts, Stanford Cars, CUB-200-2011, Oxford Flowers, Stanford Dogs, and the recent Semi-Supervised iNaturalist-Aves. Experimental results clearly show that our proposed method has better performance than the only previous approach that examined this problem; it also obtained higher classification accuracy with respect to the supervised learning methods with which we compared.

3 citations

Proceedings ArticleDOI
10 Jan 2021
TL;DR: In this article, the authors perform a thorough study of several recent state-of-the-art losses commonly used in face recognition task for deepfake classification and detection since the current deepfake is highly related to face generation.
Abstract: Due to the recent breakthroughs of deep generative models, the fake faces, also known as deepfake which has been abused to deceive the general public, can be easily produced at scale and in very high fidelity. Many works focus on exploring various network architectures or various artifacts produced by deep generative models. Instead, in this work, we focus on the loss functions which have been shown to play a significant role in the context of face recognition. We perform a thorough study of several recent state-of-the-art losses commonly used in face recognition task for deepfake classification and detection since the current deepfake is highly related to face generation. With extensive experiments on the challenging FaceForensic++ and Celeb-DF datasets, the evaluation results provide a clear overview of the performance comparisons of different loss functions and generalization capability across different deepfake data.

3 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI
08 Dec 2014
TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

38,211 citations