scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep face recognition: A survey

14 Mar 2021-Neurocomputing (Elsevier)-Vol. 429, pp 215-244
TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.
About: This article is published in Neurocomputing.The article was published on 2021-03-14 and is currently open access. It has received 353 citations till now. The article focuses on the topics: Deep learning & Feature extraction.
Citations
More filters
Journal ArticleDOI
TL;DR: A literature review of recent developments in automatic engagement estimation, including engagement definitions, datasets, and machine learning-based methods for automation estimation is presented in this paper , which aims at providing new researchers with insight on automatic engagement estimations to enhance smart learning with automatic engagement recognition methods.
Abstract: Abstract Background Recognizing learners’ engagement during learning processes is important for providing personalized pedagogical support and preventing dropouts. As learning processes shift from traditional offline classrooms to distance learning, methods for automatically identifying engagement levels should be developed. Objective This article aims to present a literature review of recent developments in automatic engagement estimation, including engagement definitions, datasets, and machine learning-based methods for automation estimation. The information, figures, and tables presented in this review aim at providing new researchers with insight on automatic engagement estimation to enhance smart learning with automatic engagement recognition methods. Methods A literature search was carried out using Scopus, Mendeley references, the IEEE Xplore digital library, and ScienceDirect following the four phases of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA): identification, screening, eligibility, and inclusion. The selected studies included research articles published between 2010 and 2022 that focused on three research questions (RQs) related to the engagement definitions, datasets, and methods used in the literature. The article selection excluded books, magazines, news articles, and posters. Results Forty-seven articles were selected to address the RQs and discuss engagement definitions, datasets, and methods. First, we introduce a clear taxonomy that defines engagement according to different types and the components used to measure it. Guided by this taxonomy, we reviewed the engagement types defined in the selected articles, with emotional engagement (n = 40; 65.57%) measured by affective cues appearing most often (n = 38; 57.58%). Then, we reviewed engagement and engagement-related datasets in the literature, with most studies assessing engagement with external observations (n = 20; 43.48%) and self-reported measures (n = 9; 19.57%). Finally, we summarized machine learning (ML)-based methods, including deep learning, used in the literature. Conclusions This review examines engagement definitions, datasets and ML-based methods from forty-seven selected articles. A taxonomy and three tables are presented to address three RQs and provide researchers in this field with guidance on enhancing smart learning with automatic engagement recognition. However, several key challenges remain, including cognitive and personalized engagement and ML issues that may affect real-world implementations.

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors simulated visual routine development through combining deep neural network and hidden Markov model that jointly learn perceptual representations and eye movement strategies for face recognition and found that higher eye movement consistency across trials, instead of a greater eyes-focused pattern, predicts better performance in children since it reflects capacity in developing visual routines.
Abstract: Greater eyes-focused eye movement pattern during face recognition is associated with better performance in adults but not in children. We test the hypothesis that higher eye movement consistency across trials, instead of a greater eyes-focused pattern, predicts better performance in children since it reflects capacity in developing visual routines. We first simulated visual routine development through combining deep neural network and hidden Markov model that jointly learn perceptual representations and eye movement strategies for face recognition. The model accounted for the advantage of eyes-focused pattern in adults, and predicted that in children (partially trained models) consistency but not pattern of eye movements predicted recognition performance. This result was then verified with data from typically developing children. In addition, lower eye movement consistency in children was associated with autism diagnosis, particularly autistic traits in social skills. Thus, children's face recognition involves visual routine development through social exposure, indexed by eye movement consistency.

2 citations

Book ChapterDOI
27 Jun 2019
TL;DR: The goal of the project is to aid the police department to ease the process of criminal recognition by the generation of face images based on image generation by using their sketch and visual attributes.
Abstract: The goal of the project is to aid the police department to ease the process of criminal recognition. We first initiate the recognition by the generation of face images based on image generation by using their sketch and visual attributes. The images we are generating are hyper-realistic in nature. This is followed by facial identification based on the image generated in the previous phase. The Model we have chosen here is a Generative Adversarial Network. The model learns the association by the use of a generator and a discriminator. We are using a context based Generative Adversarial Network to do the same.

2 citations

Patent
Thorsten Gernoth1, Atulit Kumar1, Ian R. Fasel1, Haitao Guo1, Hamsici Onur C1 
07 Feb 2019
TL;DR: In this paper, a single network encodes and decodes an image captured using a camera on a device, and if a face is detected in the image, the single network determines properties of the face and outputs the properties along with the face detection output.
Abstract: A single network encodes and decodes an image captured using a camera on a device. The single network detects if a face is in the image. If a face is detected in the image, the single network determines properties of the face in the image and outputs the properties along with the face detection output. Properties of the face may be determined by sharing the task for face detection. Properties of the face that are output along with the face detection output include the location of the face, the pose of the face, and/or the distance of the face from the camera.

2 citations

Proceedings ArticleDOI
21 Aug 2022
TL;DR: FaceQAN as discussed by the authors proposes a novel approach to face image quality assessment, called FaceQAN, that is based on adversarial examples and relies on the analysis of adversarial noise which can be calculated with any FR model learned by using some form of gradient descent.
Abstract: Recent state-of-the-art face recognition (FR) approaches have achieved impressive performance, yet unconstrained face recognition still represents an open problem. Face image quality assessment (FIQA) approaches aim to estimate the quality of the input samples that can help provide information on the confidence of the recognition decision and eventually lead to improved results in challenging scenarios. While much progress has been made in face image quality assessment in recent years, computing reliable quality scores for diverse facial images and FR models remains challenging. In this paper, we propose a novel approach to face image quality assessment, called FaceQAN, that is based on adversarial examples and relies on the analysis of adversarial noise which can be calculated with any FR model learned by using some form of gradient descent. As such, the proposed approach is the first to link image quality to adversarial attacks. Comprehensive (cross-model as well as model-specific) experiments are conducted with four benchmark datasets, i.e., LFW, CFP–FP, XQLFW and IJB–C, four FR models, i.e., CosFace, ArcFace, CurricularFace and ElasticFace, and in comparison to seven state-of-the-art FIQA methods to demonstrate the performance of FaceQAN. Experimental results show that FaceQAN achieves competitive results, while exhibiting several desirable characteristics. The source code for FaceQAN is available at https://github.com/LSIbabnikz/FaceQAN.

2 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI
08 Dec 2014
TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

38,211 citations