scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep face recognition: A survey

14 Mar 2021-Neurocomputing (Elsevier)-Vol. 429, pp 215-244
TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.
About: This article is published in Neurocomputing.The article was published on 2021-03-14 and is currently open access. It has received 353 citations till now. The article focuses on the topics: Deep learning & Feature extraction.
Citations
More filters
Reference EntryDOI
15 Oct 2004

2,118 citations

Journal ArticleDOI
TL;DR: This survey provides a comprehensive overview of a variety of object detection methods in a systematic manner, covering the one-stage and two-stage detectors, and lists the traditional and new applications.
Abstract: Object detection is one of the most important and challenging branches of computer vision, which has been widely applied in people's life, such as monitoring security, autonomous driving and so on, with the purpose of locating instances of semantic objects of a certain class. With the rapid development of deep learning algorithms for detection tasks, the performance of object detectors has been greatly improved. In order to understand the main development status of object detection pipeline thoroughly and deeply, in this survey, we analyze the methods of existing typical detection models and describe the benchmark datasets at first. Afterwards and primarily, we provide a comprehensive overview of a variety of object detection methods in a systematic manner, covering the one-stage and two-stage detectors. Moreover, we list the traditional and new applications. Some representative branches of object detection are analyzed as well. Finally, we discuss the architecture of exploiting these object detection methods to build an effective and efficient system and point out a set of development trends to better follow the state-of-the-art algorithms and further research.

749 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a review of deep neural network concepts in background subtraction for novices and experts in order to analyze this success and to provide further directions.

278 citations

01 Jan 2006
TL;DR: It is concluded that the problem of age-progression on face recognition (FR) is not unique to the algorithm used in this work, and the efficacy of this algorithm is evaluated against the variables of gender and racial origin.
Abstract: This paper details MORPH a longitudinal face database developed for researchers investigating all facets of adult age-progression, e.g. face modeling, photo-realistic animation, face recognition, etc. This database contributes to several active research areas, most notably face recognition, by providing: the largest set of publicly available longitudinal images; longitudinal spans from a few months to over twenty years; and, the inclusion of key physical parameters that affect aging appearance. The direct contribution of this data corpus for face recognition is highlighted in the evaluation of a standard face recognition algorithm, which illustrates the impact that age-progression, has on recognition rates. Assessment of the efficacy of this algorithm is evaluated against the variables of gender and racial origin. This work further concludes that the problem of age-progression on face recognition (FR) is not unique to the algorithm used in this work.

139 citations

References
More filters
Journal ArticleDOI
TL;DR: Wasserstein convolutional neural network (WCNN) as discussed by the authors was proposed to learn invariant features between near-infrared (NIR) and visual (VIS) face images, and the Wasserstein distance was introduced into the NIR-VIS shared layer to measure the dissimilarity between heterogeneous feature distributions.
Abstract: Heterogeneous face recognition (HFR) aims at matching facial images acquired from different sensing modalities with mission-critical applications in forensics, security and commercial sectors. However, HFR presents more challenging issues than traditional face recognition because of the large intra-class variation among heterogeneous face images and the limited availability of training samples of cross-modality face image pairs. This paper proposes the novel Wasserstein convolutional neural network (WCNN) approach for learning invariant features between near-infrared (NIR) and visual (VIS) face images (i.e., NIR-VIS face recognition). The low-level layers of the WCNN are trained with widely available face images in the VIS spectrum, and the high-level layer is divided into three parts: the NIR layer, the VIS layer and the NIR-VIS shared layer. The first two layers aim at learning modality-specific features, and the NIR-VIS shared layer is designed to learn a modality-invariant feature subspace. The Wasserstein distance is introduced into the NIR-VIS shared layer to measure the dissimilarity between heterogeneous feature distributions. W-CNN learning is performed to minimize the Wasserstein distance between the NIR distribution and the VIS distribution for invariant deep feature representations of heterogeneous face images. To avoid the over-fitting problem on small-scale heterogeneous face data, a correlation prior is introduced on the fully-connected WCNN layers to reduce the size of the parameter space. This prior is implemented by a low-rank constraint in an end-to-end network. The joint formulation leads to an alternating minimization for deep feature representation at the training stage and an efficient computation for heterogeneous data at the testing stage. Extensive experiments using three challenging NIR-VIS face recognition databases demonstrate the superiority of the WCNN method over state-of-the-art methods.

231 citations

Journal ArticleDOI
TL;DR: In a comprehensive comparison of face identification by humans and computers, it is found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test.
Abstract: Achieving the upper limits of face identification accuracy in forensic applications can minimize errors that have profound social and personal consequences. Although forensic examiners identify faces in these applications, systematic tests of their accuracy are rare. How can we achieve the most accurate face identification: using people and/or machines working alone or in collaboration? In a comprehensive comparison of face identification by humans and computers, we found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test. Individual performance on the test varied widely. On the same test, four deep convolutional neural networks (DCNNs), developed between 2015 and 2017, identified faces within the range of human accuracy. Accuracy of the algorithms increased steadily over time, with the most recent DCNN scoring above the median of the forensic facial examiners. Using crowd-sourcing methods, we fused the judgments of multiple forensic facial examiners by averaging their rating-based identity judgments. Accuracy was substantially better for fused judgments than for individuals working alone. Fusion also served to stabilize performance, boosting the scores of lower-performing individuals and decreasing variability. Single forensic facial examiners fused with the best algorithm were more accurate than the combination of two examiners. Therefore, collaboration among humans and between humans and machines offers tangible benefits to face identification accuracy in important applications. These results offer an evidence-based roadmap for achieving the most accurate face identification possible.

229 citations

Proceedings ArticleDOI
01 Jun 2018
TL;DR: Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of the proposed Pose Invariant Model for face recognition in the wild over the state of thearts.
Abstract: Pose variation is one key challenge in face recognition. As opposed to current techniques for pose invariant face recognition, which either directly extract pose invariant features for recognition, or first normalize profile face images to frontal pose before feature extraction, we argue that it is more desirable to perform both tasks jointly to allow them to benefit from each other. To this end, we propose a Pose Invariant Model (PIM) for face recognition in the wild, with three distinct novelties. First, PIM is a novel and unified deep architecture, containing a Face Frontalization sub-Net (FFN) and a Discriminative Learning sub-Net (DLN), which are jointly learned from end to end. Second, FFN is a well-designed dual-path Generative Adversarial Network (GAN) which simultaneously perceives global structures and local details, incorporated with an unsupervised cross-domain adversarial training and a "learning to learn" strategy for high-fidelity and identity-preserving frontal view synthesis. Third, DLN is a generic Convolutional Neural Network (CNN) for face recognition with our enforced cross-entropy optimization strategy for learning discriminative yet generalized feature representation. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of the proposed model over the state-of-the-arts.

222 citations

Journal ArticleDOI
TL;DR: A dynamic-weighting scheme to automatically assign the loss weights to each side task solves the crucial problem of balancing between different tasks in MTL and achieves comparable or better performance on LFW, CFP, and IJB-A datasets.
Abstract: This paper explores multi-task learning (MTL) for face recognition. First, we propose a multi-task convolutional neural network (CNN) for face recognition, where identity classification is the main task and pose, illumination, and expression (PIE) estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weights to each side task, which solves the crucial problem of balancing between different tasks in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses in a joint framework. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the PIE variations from the learnt identity features. Extensive experiments on the entire multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in multi-PIE for face recognition. Our approach is also applicable to in-the-wild data sets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.

220 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: A new supervision signal named marginal loss is proposed for deep face recognition that simultaneously minimises the intra-class variances as well as maximises the inter-class distances by focusing on the marginal samples.
Abstract: Convolutional neural networks have significantly boosted the performance of face recognition in recent years due to its high capacity in learning discriminative features. In order to enhance the discriminative power of the deeply learned features, we propose a new supervision signal named marginal loss for deep face recognition. Specifically, the marginal loss simultaneously minimises the intra-class variances as well as maximises the inter-class distances by focusing on the marginal samples. With the joint supervision of softmax loss and marginal loss, we can easily train a robust CNNs to obtain more discriminative deep features. Extensive experiments on several relevant face recognition benchmarks, Labelled Faces in the Wild (LFW), YouTube Faces (YTF), Cross-Age Celebrity Dataset (CACD), Age Database (AgeDB) and MegaFace Challenge, prove the effectiveness of the proposed marginal loss.

216 citations