scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep face recognition: A survey

14 Mar 2021-Neurocomputing (Elsevier)-Vol. 429, pp 215-244
TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.
About: This article is published in Neurocomputing.The article was published on 2021-03-14 and is currently open access. It has received 353 citations till now. The article focuses on the topics: Deep learning & Feature extraction.
Citations
More filters
Reference EntryDOI
15 Oct 2004

2,118 citations

Journal ArticleDOI
TL;DR: This survey provides a comprehensive overview of a variety of object detection methods in a systematic manner, covering the one-stage and two-stage detectors, and lists the traditional and new applications.
Abstract: Object detection is one of the most important and challenging branches of computer vision, which has been widely applied in people's life, such as monitoring security, autonomous driving and so on, with the purpose of locating instances of semantic objects of a certain class. With the rapid development of deep learning algorithms for detection tasks, the performance of object detectors has been greatly improved. In order to understand the main development status of object detection pipeline thoroughly and deeply, in this survey, we analyze the methods of existing typical detection models and describe the benchmark datasets at first. Afterwards and primarily, we provide a comprehensive overview of a variety of object detection methods in a systematic manner, covering the one-stage and two-stage detectors. Moreover, we list the traditional and new applications. Some representative branches of object detection are analyzed as well. Finally, we discuss the architecture of exploiting these object detection methods to build an effective and efficient system and point out a set of development trends to better follow the state-of-the-art algorithms and further research.

749 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a review of deep neural network concepts in background subtraction for novices and experts in order to analyze this success and to provide further directions.

278 citations

01 Jan 2006
TL;DR: It is concluded that the problem of age-progression on face recognition (FR) is not unique to the algorithm used in this work, and the efficacy of this algorithm is evaluated against the variables of gender and racial origin.
Abstract: This paper details MORPH a longitudinal face database developed for researchers investigating all facets of adult age-progression, e.g. face modeling, photo-realistic animation, face recognition, etc. This database contributes to several active research areas, most notably face recognition, by providing: the largest set of publicly available longitudinal images; longitudinal spans from a few months to over twenty years; and, the inclusion of key physical parameters that affect aging appearance. The direct contribution of this data corpus for face recognition is highlighted in the evaluation of a standard face recognition algorithm, which illustrates the impact that age-progression, has on recognition rates. Assessment of the efficacy of this algorithm is evaluated against the variables of gender and racial origin. This work further concludes that the problem of age-progression on face recognition (FR) is not unique to the algorithm used in this work.

139 citations

References
More filters
Journal ArticleDOI
TL;DR: The ultimate aims of this study are to present concrete facts related to research activities in facial ageing during the past decade, provide an indication of the main methodologies adopted, present a comprehensive list of benchmark results and most importantly provide roadmaps for future trends, requirements and research directions in Facial ageing.
Abstract: The face and gesture recognition network (FG-NET) ageing database was released in 2004 in an attempt to support research activities aimed at understanding the changes in facial appearance caused by ageing. Since then the database was used for carrying out research in various disciplines including age estimation, age-invariant face recognition and age progression. On the basis of the analysis of published work where the FG-NET ageing database was used, conclusions related to the type of research carried out in relation to the impact of the dataset in shaping up the research topic of facial ageing are presented. This study also includes a review of key articles from different thematic areas, where the FG-NET ageing database was used and the presentation of benchmark results. The ultimate aims of this study are to present concrete facts related to research activities in facial ageing during the past decade, provide an indication of the main methodologies adopted, present a comprehensive list of benchmark results and most importantly provide roadmaps for future trends, requirements and research directions in facial ageing.

210 citations

Book ChapterDOI
08 Sep 2018
TL;DR: It is demonstrated on this dataset, for a number of facial attribute classification tasks, that the algorithm can be used to remove racial biases from the network feature representation.
Abstract: Neural networks achieve the state-of-the-art in image classification tasks. However, they can encode spurious variations or biases that may be present in the training data. For example, training an age predictor on a dataset that is not balanced for gender can lead to gender biased predicitons (e.g. wrongly predicting that males are older if only elderly males are in the training set). We present two distinct contributions: (1) An algorithm that can remove multiple sources of variation from the feature representation of a network. We demonstrate that this algorithm can be used to remove biases from the feature representation, and thereby improve classification accuracies, when training networks on extremely biased datasets. (2) An ancestral origin database of 14,000 images of individuals from East Asia, the Indian subcontinent, sub-Saharan Africa, and Western Europe. We demonstrate on this dataset, for a number of facial attribute classification tasks, that we are able to remove racial biases from the network feature representation.

207 citations

Proceedings ArticleDOI
19 Apr 2016
TL;DR: In this paper, a triplet probability constraint-based face verification method was proposed to address the unconstrained face verification problem. But the proposed method requires much less training data and training/test time.
Abstract: Despite significant progress made over the past twenty five years, unconstrained face verification remains a challenging problem. This paper proposes an approach that couples a deep CNN-based approach with a low-dimensional discriminative embedding step, learned using triplet probability constraints to address the unconstrained face verification problem. Aside from yielding performance improvements, this embedding provides significant advantages in terms of memory and for post-processing operations like subject specific clustering. Experiments on the challenging IJB-A dataset show that the proposed algorithm performs close to the state of the art methods in verification and identification metrics, while requiring much less training data and training/test time. The superior performance of the proposed method on the CFP dataset shows that the representation learned by our deep CNN is robust to large pose variation. Furthermore, we demonstrate the robustness of deep features to challenges including age, pose, blur and clutter by performing simple clustering experiments on both IJB-A and LFW datasets.

207 citations

Posted Content
TL;DR: This paper investigated how long-tailed data impact the training of face CNNs and develop a novel loss function, called range loss, to effectively utilize the tailed data in training process, and demonstrates the effectiveness of the proposed range loss in overcoming the long tail effect.
Abstract: Convolutional neural networks have achieved great improvement on face recognition in recent years because of its extraordinary ability in learning discriminative features of people with different identities. To train such a well-designed deep network, tremendous amounts of data is indispensable. Long tail distribution specifically refers to the fact that a small number of generic entities appear frequently while other objects far less existing. Considering the existence of long tail distribution of the real world data, large but uniform distributed data are usually hard to retrieve. Empirical experiences and analysis show that classes with more samples will pose greater impact on the feature learning process and inversely cripple the whole models feature extracting ability on tail part data. Contrary to most of the existing works that alleviate this problem by simply cutting the tailed data for uniform distributions across the classes, this paper proposes a new loss function called range loss to effectively utilize the whole long tailed data in training process. More specifically, range loss is designed to reduce overall intra-personal variations while enlarging inter-personal differences within one mini-batch simultaneously when facing even extremely unbalanced data. The optimization objective of range loss is the $k$ greatest range's harmonic mean values in one class and the shortest inter-class distance within one batch. Extensive experiments on two famous and challenging face recognition benchmarks (Labeled Faces in the Wild (LFW) and YouTube Faces (YTF) not only demonstrate the effectiveness of the proposed approach in overcoming the long tail effect but also show the good generalization ability of the proposed approach.

201 citations

Posted Content
TL;DR: The Megvii Face Recognition System is built, which achieves 99.50% accuracy on the LFW benchmark, outperforming the previous state-of-the-art, and the performance in a real-world security certification scenario is reported.
Abstract: Face recognition performance improves rapidly with the recent deep learning technique developing and underlying large training dataset accumulating. In this paper, we report our observations on how big data impacts the recognition performance. According to these observations, we build our Megvii Face Recognition System, which achieves 99.50% accuracy on the LFW benchmark, outperforming the previous state-of-the-art. Furthermore, we report the performance in a real-world security certification scenario. There still exists a clear gap between machine recognition and human performance. We summarize our experiments and present three challenges lying ahead in recent face recognition. And we indicate several possible solutions towards these challenges. We hope our work will stimulate the community's discussion of the difference between research benchmark and real-world applications.

198 citations