scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep learning

28 May 2015-Nature (Nature Research)-Vol. 521, Iss: 7553, pp 436-444
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
Citations
More filters
Proceedings ArticleDOI
Minwei Feng1, Bing Xiang1, Michael R. Glass1, Lidan Wang1, Bowen Zhou1 
07 Aug 2015
TL;DR: A general deep learning framework is applied to address the non-factoid question answering task and demonstrates superior performance compared to the baseline methods and various technologies give further improvements.
Abstract: We apply a general deep learning framework to address the non-factoid question answering task. Our approach does not rely on any linguistic tools and can be applied to different languages or domains. Various architectures are presented and compared. We create and release a QA corpus and setup a new QA task in the insurance domain. Experimental results demonstrate superior performance compared to the baseline methods and various technologies give further improvements. For this highly challenging task, the top-1 accuracy can reach up to 65.3% on a test set, which indicates a great potential for practical use.

360 citations


Cites background from "Deep learning"

  • ...As summarized in Chapter 11 of [5], a CNN leverages three important ideas that can help improve a machine learning system: sparse interaction, parameter sharing and equivariant representation....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a detailed analysis of Colaboratory regarding hardware resources, performance, and limitations and shows that the performance reached using this cloud service is equivalent to the performance of the dedicated testbeds, given similar resources.
Abstract: Google Colaboratory (also known as Colab) is a cloud service based on Jupyter Notebooks for disseminating machine learning education and research. It provides a runtime fully configured for deep learning and free-of-charge access to a robust GPU. This paper presents a detailed analysis of Colaboratory regarding hardware resources, performance, and limitations. This analysis is performed through the use of Colaboratory for accelerating deep learning for computer vision and other GPU-centric applications. The chosen test-cases are a parallel tree-based combinatorial search and two computer vision applications: object detection/classification and object localization/segmentation. The hardware under the accelerated runtime is compared with a mainstream workstation and a robust Linux server equipped with 20 physical cores. Results show that the performance reached using this cloud service is equivalent to the performance of the dedicated testbeds, given similar resources. Thus, this service can be effectively exploited to accelerate not only deep learning but also other classes of GPU-centric applications. For instance, it is faster to train a CNN on Colaboratory’s accelerated runtime than using 20 physical cores of a Linux server. The performance of the GPU made available by Colaboratory may be enough for several profiles of researchers and students. However, these free-of-charge hardware resources are far from enough to solve demanding real-world problems and are not scalable. The most significant limitation found is the lack of CPU cores. Finally, several strengths and limitations of this cloud service are discussed, which might be useful for helping potential users.

360 citations

Proceedings ArticleDOI
01 Nov 2017
TL;DR: The paper proposes a new dataset and four strategies to improve the standard Faster R-CNN algorithm, including feature fusion, transfer learning, hard negative mining, and other implementation details, and shows that the proposed method obtains better accuracy and less test cost.
Abstract: Deep learning has led to impressive performance on a variety of object detection tasks recently. But it is rarely applied in ship detection of SAR images. The paper aims to introduce the detector based on deep learning into this field. We analyze the advantages of the state-of-the-art Faster R-CNN detector in computer vision and limitations in our specific domain. Given this analysis, we proposed a new dataset and four strategies to improve the standard Faster R-CNN algorithm. The dataset contains ships in various environments, such as image resolution, ship size, sea condition, and sensor type, it can be a benchmark for researchers to evaluate their algorithms. The strategies include feature fusion, transfer learning, hard negative mining, and other implementation details. We conducted some comparison and ablation experiments on our dataset. The result shows that our proposed method obtains better accuracy and less test cost. We believe that SAR ship detection method based on deep learning must be the focus of future research.

360 citations

Journal ArticleDOI
TL;DR: This study investigates the use of end‐to‐end representation learning for compounds and proteins, integrates the representations, and develops a new CPI prediction approach by combining a graph neural network (GNN) for compound and a convolutional Neural Network (CNN) for proteins.
Abstract: Motivation In bioinformatics, machine learning-based methods that predict the compound-protein interactions (CPIs) play an important role in the virtual screening for drug discovery. Recently, end-to-end representation learning for discrete symbolic data (e.g. words in natural language processing) using deep neural networks has demonstrated excellent performance on various difficult problems. For the CPI problem, data are provided as discrete symbolic data, i.e. compounds are represented as graphs where the vertices are atoms, the edges are chemical bonds, and proteins are sequences in which the characters are amino acids. In this study, we investigate the use of end-to-end representation learning for compounds and proteins, integrate the representations, and develop a new CPI prediction approach by combining a graph neural network (GNN) for compounds and a convolutional neural network (CNN) for proteins. Results Our experiments using three CPI datasets demonstrated that the proposed end-to-end approach achieves competitive or higher performance as compared to various existing CPI prediction methods. In addition, the proposed approach significantly outperformed existing methods on an unbalanced dataset. This suggests that data-driven representations of compounds and proteins obtained by end-to-end GNNs and CNNs are more robust than traditional chemical and biological features obtained from databases. Although analyzing deep learning models is difficult due to their black-box nature, we address this issue using a neural attention mechanism, which allows us to consider which subsequences in a protein are more important for a drug compound when predicting its interaction. The neural attention mechanism also provides effective visualization, which makes it easier to analyze a model even when modeling is performed using real-valued representations instead of discrete features. Availability and implementation https://github.com/masashitsubaki. Supplementary information Supplementary data are available at Bioinformatics online.

357 citations

References
More filters
Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Abstract: We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.

23,814 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations