scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep learning

28 May 2015-Nature (Nature Research)-Vol. 521, Iss: 7553, pp 436-444
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
Citations
More filters
Proceedings ArticleDOI
01 Jul 2018
TL;DR: This paper investigates matching a response with its multi-turn context using dependency information based entirely on attention using Transformer in machine translation and extends the attention mechanism in two ways, which jointly introduce those two kinds of attention in one uniform neural network.
Abstract: Human generates responses relying on semantic and functional dependencies, including coreference relation, among dialogue elements and their context. In this paper, we investigate matching a response with its multi-turn context using dependency information based entirely on attention. Our solution is inspired by the recently proposed Transformer in machine translation (Vaswani et al., 2017) and we extend the attention mechanism in two ways. First, we construct representations of text segments at different granularities solely with stacked self-attention. Second, we try to extract the truly matched segment pairs with attention across the context and response. We jointly introduce those two kinds of attention in one uniform neural network. Experiments on two large-scale multi-turn response selection tasks show that our proposed model significantly outperforms the state-of-the-art models.

343 citations

Journal ArticleDOI
TL;DR: The field is reviewed from a historical perspective, covering ubiquitous and pervasive computing, ambient intelligence, and wireless sensor networks, and then, move to context-aware computing studies, which identify the open issues and provide an insight for future study areas for IoT researchers.
Abstract: Internet of Things (IoT) has been growing rapidly due to recent advancements in communications and sensor technologies. Meanwhile, with this revolutionary transformation, researchers, implementers, deployers, and users are faced with many challenges. IoT is a complicated, crowded, and complex field; there are various types of devices, protocols, communication channels, architectures, middleware, and more. Standardization efforts are plenty, and this chaos will continue for quite some time. What is clear, on the other hand, is that IoT deployments are increasing with accelerating speed, and this trend will not stop in the near future. As the field grows in numbers and heterogeneity, “intelligence” becomes a focal point in IoT. Since data now becomes “big data,” understanding, learning, and reasoning with big data is paramount for the future success of IoT. One of the major problems in the path to intelligent IoT is understanding “context,” or making sense of the environment, situation, or status using data from sensors, and then acting accordingly in autonomous ways. This is called “context-aware computing,” and it now requires both sensing and, increasingly, learning, as IoT systems get more data and better learning from this big data. In this survey, we review the field, first, from a historical perspective, covering ubiquitous and pervasive computing, ambient intelligence, and wireless sensor networks, and then, move to context-aware computing studies. Finally, we review learning and big data studies related to IoT. We also identify the open issues and provide an insight for future study areas for IoT researchers.

343 citations

Journal ArticleDOI
TL;DR: This paper uses deep convolutional recurrent neural networks for hyperspectral image classification by treating each hyperspectrals pixel as a spectral sequence and proposes a constrained Dirichlet process mixture model (C-DPMM) for semi-supervised clustering which includes pairwise must-link and cannot-link constraints, resulting in improved initialization of the deep neural network.
Abstract: Deep learning has gained popularity in a variety of computer vision tasks. Recently, it has also been successfully applied for hyperspectral image classification tasks. Training deep neural networks, such as a convolutional neural network for classification requires a large number of labeled samples. However, in remote sensing applications, we usually only have a small amount of labeled data for training because they are expensive to collect, although we still have abundant unlabeled data. In this paper, we propose semi-supervised deep learning for hyperspectral image classification—our approach uses limited labeled data and abundant unlabeled data to train a deep neural network. More specifically, we use deep convolutional recurrent neural networks (CRNN) for hyperspectral image classification by treating each hyperspectral pixel as a spectral sequence. In the proposed semi-supervised learning framework, the abundant unlabeled data are utilized with their pseudo labels (cluster labels). We propose to use all the training data together with their pseudo labels to pre-train a deep CRNN, and then fine-tune using the limited available labeled data. Further, to utilize spatial information in the hyperspectral images, we propose a constrained Dirichlet process mixture model (C-DPMM), a non-parametric Bayesian clustering algorithm, for semi-supervised clustering which includes pairwise must-link and cannot-link constraints—this produces high-quality pseudo-labels, resulting in improved initialization of the deep neural network. We also derived a variational inference model for the C-DPMM for efficient inference. Experimental results with real hyperspectral image data sets demonstrate that the proposed semi-supervised method outperforms state-of-the-art supervised and semi-supervised learning methods for hyperspectral classification.

342 citations

Journal ArticleDOI
TL;DR: DeepCare is introduced, an end-to-end deep dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes, demonstrating the efficacy of DeepCare for disease progression modeling, intervention recommendation, and future risk prediction.

342 citations

Posted Content
Joshua Saxe1, Konstantin Berlin1
TL;DR: In this paper, a deep neural network malware classifier is proposed that achieves a usable detection rate at an extremely low false positive rate and scales to real world training example volumes on commodity hardware.
Abstract: Malware remains a serious problem for corporations, government agencies, and individuals, as attackers continue to use it as a tool to effect frequent and costly network intrusions. Machine learning holds the promise of automating the work required to detect newly discovered malware families, and could potentially learn generalizations about malware and benign software that support the detection of entirely new, unknown malware families. Unfortunately, few proposed machine learning based malware detection methods have achieved the low false positive rates required to deliver deployable detectors. In this paper we a deep neural network malware classifier that achieves a usable detection rate at an extremely low false positive rate and scales to real world training example volumes on commodity hardware. Specifically, we show that our system achieves a 95% detection rate at 0.1% false positive rate (FPR), based on more than 400,000 software binaries sourced directly from our customers and internal malware databases. We achieve these results by directly learning on all binaries, without any filtering, unpacking, or manually separating binary files into categories. Further, we confirm our false positive rates directly on a live stream of files coming in from Invincea's deployed endpoint solution, provide an estimate of how many new binary files we expected to see a day on an enterprise network, and describe how that relates to the false positive rate and translates into an intuitive threat score. Our results demonstrate that it is now feasible to quickly train and deploy a low resource, highly accurate machine learning classification model, with false positive rates that approach traditional labor intensive signature based methods, while also detecting previously unseen malware.

342 citations

References
More filters
Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Abstract: We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.

23,814 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations