scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep learning

28 May 2015-Nature (Nature Research)-Vol. 521, Iss: 7553, pp 436-444
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
Citations
More filters
Journal ArticleDOI
28 Jul 2020
TL;DR: Striking results that leverage physics to enhance the computing capabilities of artificial neural networks, using resistive switching materials, photonics, spintronics and other technologies are reviewed.
Abstract: Neuromorphic computing takes inspiration from the brain to create energy-efficient hardware for information processing, capable of highly sophisticated tasks. Systems built with standard electronics achieve gains in speed and energy by mimicking the distributed topology of the brain. Scaling-up such systems and improving their energy usage, speed and performance by several orders of magnitude requires a revolution in hardware. We discuss how including more physics in the algorithms and nanoscale materials used for data processing could have a major impact in the field of neuromorphic computing. We review striking results that leverage physics to enhance the computing capabilities of artificial neural networks, using resistive switching materials, photonics, spintronics and other technologies. We discuss the paths that could lead these approaches to maturity, towards low-power, miniaturized chips that could infer and learn in real time. Neuromorphic computing takes inspiration from the brain to create energy-efficient hardware for information processing, capable of highly sophisticated tasks. Including more physics in the algorithms and nanoscale materials used for computing could have a major impact in this field.

292 citations

Journal ArticleDOI
Daniel Kang1, John Emmons1, Firas Abuzaid1, Peter Bailis1, Matei Zaharia1 
01 Aug 2017
TL;DR: NoScope as mentioned in this paper cascades two types of models: specialized models that forego the full generality of the reference model but faithfully mimic its behavior for the target video and object; and difference detectors that highlight temporal differences across frames.
Abstract: Recent advances in computer vision---in the form of deep neural networks---have made it possible to query increasing volumes of video data with high accuracy. However, neural network inference is computationally expensive at scale: applying a state-of-the-art object detector in real time (i.e., 30+ frames per second) to a single video requires a $4000 GPU. In response, we present NoScope, a system for querying videos that can reduce the cost of neural network video analysis by up to three orders of magnitude via inference-optimized model search. Given a target video, object to detect, and reference neural network, NoScope automatically searches for and trains a sequence, or cascade, of models that preserves the accuracy of the reference network but is specialized to the target video and are therefore far less computationally expensive. NoScope cascades two types of models: specialized models that forego the full generality of the reference model but faithfully mimic its behavior for the target video and object; and difference detectors that highlight temporal differences across frames. We show that the optimal cascade architecture differs across videos and objects, so NoScope uses an efficient cost-based optimizer to search across models and cascades. With this approach, NoScope achieves two to three order of magnitude speed-ups (265-15,500x real-time) on binary classification tasks over fixed-angle webcam and surveillance video while maintaining accuracy within 1--5% of state-of-the-art neural networks.

291 citations

Journal ArticleDOI
TL;DR: It is shown that the off-the-shelf CNN features, while originally trained for classifying generic objects, are also extremely good at representing iris images, effectively extracting discriminative visual features and achieving promising recognition results on two iris datasets: ND-CrossSensor-2013 and CASIA-Iris-Thousand.
Abstract: Iris recognition refers to the automated process of recognizing individuals based on their iris patterns. The seemingly stochastic nature of the iris stroma makes it a distinctive cue for biometric recognition. The textural nuances of an individual’s iris pattern can be effectively extracted and encoded by projecting them onto Gabor wavelets and transforming the ensuing phasor response into a binary code - a technique pioneered by Daugman. This textural descriptor has been observed to be a robust feature descriptor with very low false match rates and low computational complexity. However, recent advancements in deep learning and computer vision indicate that generic descriptors extracted using convolutional neural networks (CNNs) are able to represent complex image characteristics. Given the superior performance of CNNs on the ImageNet large scale visual recognition challenge and a large number of other computer vision tasks, in this paper, we explore the performance of state-of-the-art pre-trained CNNs on iris recognition. We show that the off-the-shelf CNN features, while originally trained for classifying generic objects, are also extremely good at representing iris images, effectively extracting discriminative visual features and achieving promising recognition results on two iris datasets: ND-CrossSensor-2013 and CASIA-Iris-Thousand. We also discuss the challenges and future research directions in leveraging deep learning methods for the problem of iris recognition.

291 citations

Journal ArticleDOI
TL;DR: A new diversified DBN is developed through regularizing pretraining and fine-tuning procedures by a diversity promoting prior over latent factors that obtain much better results than original DBNs and comparable or even better performances compared with other recent hyperspectral image classification methods.
Abstract: In the literature of remote sensing, deep models with multiple layers have demonstrated their potentials in learning the abstract and invariant features for better representation and classification of hyperspectral images. The usual supervised deep models, such as convolutional neural networks, need a large number of labeled training samples to learn their model parameters. However, the real-world hyperspectral image classification task provides only a limited number of training samples. This paper adopts another popular deep model, i.e., deep belief networks (DBNs), to deal with this problem. The DBNs allow unsupervised pretraining over unlabeled samples at first and then a supervised fine-tuning over labeled samples. But the usual pretraining and fine-tuning method would make many hidden units in the learned DBNs tend to behave very similarly or perform as “dead” (never responding) or “potential over-tolerant” (always responding) latent factors. These results could negatively affect description ability and thus classification performance of DBNs. To further improve DBN’s performance, this paper develops a new diversified DBN through regularizing pretraining and fine-tuning procedures by a diversity promoting prior over latent factors. Moreover, the regularized pretraining and fine-tuning can be efficiently implemented through usual recursive greedy and back-propagation learning framework. The experiments over real-world hyperspectral images demonstrated that the diversity promoting prior in both pretraining and fine-tuning procedure lead to the learned DBNs with more diverse latent factors, which directly make the diversified DBNs obtain much better results than original DBNs and comparable or even better performances compared with other recent hyperspectral image classification methods.

291 citations

References
More filters
Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Abstract: We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.

23,814 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations