scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep learning

28 May 2015-Nature (Nature Research)-Vol. 521, Iss: 7553, pp 436-444
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
Citations
More filters
Proceedings ArticleDOI
01 Nov 2016
TL;DR: The authors proposed a deep memory network for aspect level sentiment classification, which explicitly captures the importance of each context word when inferring the sentiment polarity of an aspect, such importance degree and text representation are calculated with multiple computational layers, each of which is a neural attention model over an external memory.
Abstract: We introduce a deep memory network for aspect level sentiment classification. Unlike feature-based SVM and sequential neural models such as LSTM, this approach explicitly captures the importance of each context word when inferring the sentiment polarity of an aspect. Such importance degree and text representation are calculated with multiple computational layers, each of which is a neural attention model over an external memory. Experiments on laptop and restaurant datasets demonstrate that our approach performs comparable to state-of-art feature based SVM system, and substantially better than LSTM and attention-based LSTM architectures. On both datasets we show that multiple computational layers could improve the performance. Moreover, our approach is also fast. The deep memory network with 9 layers is 15 times faster than LSTM with a CPU implementation.

731 citations

Journal ArticleDOI
23 Jan 2018
TL;DR: This comprehensive review summarizes state of the art, challenges, and prospects of the neuro-inspired computing with emerging nonvolatile memory devices and presents a device-circuit-algorithm codesign methodology to evaluate the impact of nonideal device effects on the system-level performance.
Abstract: This comprehensive review summarizes state of the art, challenges, and prospects of the neuro-inspired computing with emerging nonvolatile memory devices. First, we discuss the demand for developing neuro-inspired architecture beyond today’s von-Neumann architecture. Second, we summarize the various approaches to designing the neuromorphic hardware (digital versus analog, spiking versus nonspiking, online training versus offline training) and discuss why emerging nonvolatile memory is attractive for implementing the synapses in the neural network. Then, we discuss the desired device characteristics of the synaptic devices (e.g., multilevel states, weight update nonlinearity/asymmetry, variation/noise), and survey a few representative material systems and device prototypes reported in the literature that show the analog conductance tuning. These candidates include phase change memory, resistive memory, ferroelectric memory, floating-gate transistors, etc. Next, we introduce the crossbar array architecture to accelerate the weighted sum and weight update operations that are commonly used in the neuro-inspired machine learning algorithms, and review the recent progresses of array-level experimental demonstrations for pattern recognition tasks. In addition, we discuss the peripheral neuron circuit design issues and present a device-circuit-algorithm codesign methodology to evaluate the impact of nonideal device effects on the system-level performance (e.g., learning accuracy). Finally, we give an outlook on the customization of the learning algorithms for efficient hardware implementation.

730 citations


Cites background from "Deep learning"

  • ..., machine/deep learning) have shown significantly improved accuracy in large-scale visual/auditory recognition and classification tasks, some even surpassing human-level accuracy [2]....

    [...]

Journal ArticleDOI
TL;DR: This article provides some necessary definitions to discriminate between explainability and causability as well as a use‐case of DL interpretation and of human explanation in histopathology, and argues that there is a need to go beyond explainable AI.
Abstract: Explainable artificial intelligence (AI) is attracting much interest in medicine. Technically, the problem of explainability is as old as AI itself and classic AI represented comprehensible retraceable approaches. However, their weakness was in dealing with uncertainties of the real world. Through the introduction of probabilistic learning, applications became increasingly successful, but increasingly opaque. Explainable AI deals with the implementation of transparency and traceability of statistical black-box machine learning methods, particularly deep learning (DL). We argue that there is a need to go beyond explainable AI. To reach a level of explainable medicine we need causability. In the same way that usability encompasses measurements for the quality of use, causability encompasses measurements for the quality of explanations. In this article, we provide some necessary definitions to discriminate between explainability and causability as well as a use-case of DL interpretation and of human explanation in histopathology. The main contribution of this article is the notion of causability, which is differentiated from explainability in that causability is a property of a person, while explainability is a property of a system This article is categorized under: Fundamental Concepts of Data and Knowledge > Human Centricity and User Interaction.

723 citations

Proceedings ArticleDOI
24 Jul 2016
TL;DR: This method aims to allow using the high-resolution histopathological images from BreaKHis as input to existing CNN, avoiding adaptations of the model that can lead to a more complex and computationally costly architecture.
Abstract: The performance of most conventional classification systems relies on appropriate data representation and much of the efforts are dedicated to feature engineering, a difficult and time-consuming process that uses prior expert domain knowledge of the data to create useful features. On the other hand, deep learning can extract and organize the discriminative information from the data, not requiring the design of feature extractors by a domain expert. Convolutional Neural Networks (CNNs) are a particular type of deep, feedforward network that have gained attention from research community and industry, achieving empirical successes in tasks such as speech recognition, signal processing, object recognition, natural language processing and transfer learning. In this paper, we conduct some preliminary experiments using the deep learning approach to classify breast cancer histopathological images from BreaKHis, a publicly dataset available at http://web.inf.ufpr.br/vri/breast-cancer-database. We propose a method based on the extraction of image patches for training the CNN and the combination of these patches for final classification. This method aims to allow using the high-resolution histopathological images from BreaKHis as input to existing CNN, avoiding adaptations of the model that can lead to a more complex and computationally costly architecture. The CNN performance is better when compared to previously reported results obtained by other machine learning models trained with hand-crafted textural descriptors. Finally, we also investigate the combination of different CNNs using simple fusion rules, achieving some improvement in recognition rates.

720 citations

Book ChapterDOI
24 Jul 2017
TL;DR: A novel automated verification framework for feed-forward multi-layer neural networks based on Satisfiability Modulo Theory (SMT) is developed, which defines safety for an individual decision in terms of invariance of the classification within a small neighbourhood of the original image.
Abstract: Deep neural networks have achieved impressive experimental results in image classification, but can surprisingly be unstable with respect to adversarial perturbations, that is, minimal changes to the input image that cause the network to misclassify it With potential applications including perception modules and end-to-end controllers for self-driving cars, this raises concerns about their safety We develop a novel automated verification framework for feed-forward multi-layer neural networks based on Satisfiability Modulo Theory (SMT) We focus on safety of image classification decisions with respect to image manipulations, such as scratches or changes to camera angle or lighting conditions that would result in the same class being assigned by a human, and define safety for an individual decision in terms of invariance of the classification within a small neighbourhood of the original image We enable exhaustive search of the region by employing discretisation, and propagate the analysis layer by layer Our method works directly with the network code and, in contrast to existing methods, can guarantee that adversarial examples, if they exist, are found for the given region and family of manipulations If found, adversarial examples can be shown to human testers and/or used to fine-tune the network We implement the techniques using Z3 and evaluate them on state-of-the-art networks, including regularised and deep learning networks We also compare against existing techniques to search for adversarial examples and estimate network robustness

720 citations

References
More filters
Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Abstract: We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.

23,814 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations