scispace - formally typeset
Journal ArticleDOI

Deep learning

Reads0
Chats0
TLDR
Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

read more

Citations
More filters
Posted Content

Classification with Quantum Neural Networks on Near Term Processors

TL;DR: A quantum neural network, QNN, that can represent labeled data, classical or quantum, and be trained by supervised learning, is introduced and it is shown through classical simulation that parameters can be found that allow the QNN to learn to correctly distinguish the two data sets.
Journal ArticleDOI

Deep learning classifiers for hyperspectral imaging: A review

TL;DR: A comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and weaknesses of the most widely used classifiers in the literature is provided, providing an exhaustive comparison of the discussed techniques.
Proceedings ArticleDOI

Multi-level Factorisation Net for Person Re-identification

TL;DR: Multi-Level Factorization Net (MLFN) as discussed by the authors is a novel network architecture that factorises the visual appearance of a person into latent discriminative factors at multiple semantic levels without manual annotation.
Proceedings ArticleDOI

Deep learning code fragments for code clone detection

TL;DR: This work introduces learning-based detection techniques where everything for representing terms and fragments in source code is mined from the repository, and compared its approach to a traditional structure-oriented technique and found that it detected clones that were either undetected or suboptimally reported by the prominent tool Deckard.
Journal ArticleDOI

Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox

TL;DR: Experimental results and comprehensive comparison analysis have demonstrated the superiority of the proposed MSCNN approach, thus providing an end-to-end learning-based fault diagnosis system for WT gearbox without additional signal processing and diagnostic expertise.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Learning representations by back-propagating errors

TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Related Papers (5)