scispace - formally typeset
Journal ArticleDOI

Deep learning

Reads0
Chats0
TLDR
Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

read more

Citations
More filters
Journal ArticleDOI

Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks

TL;DR: Eyeriss as mentioned in this paper is an accelerator for state-of-the-art deep convolutional neural networks (CNNs) that optimizes for the energy efficiency of the entire system, including the accelerator chip and off-chip DRAM, by reconfiguring the architecture.
Journal ArticleDOI

Quantum machine learning

TL;DR: The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers.
Journal ArticleDOI

Using Deep Learning for Image-Based Plant Disease Detection

TL;DR: In this article, a deep convolutional neural network was used to identify 14 crop species and 26 diseases (or absence thereof) using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions.
Proceedings ArticleDOI

Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks

TL;DR: In this article, the authors introduce a defensive mechanism called defensive distillation to reduce the effectiveness of adversarial samples on DNNs, which increases the average minimum number of features that need to be modified to create adversarial examples by about 800%.
Journal ArticleDOI

Deep learning in agriculture: A survey

TL;DR: A survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges indicates that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Learning representations by back-propagating errors

TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Related Papers (5)