scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep learning

28 May 2015-Nature (Nature Research)-Vol. 521, Iss: 7553, pp 436-444
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
Citations
More filters
Journal ArticleDOI
TL;DR: A new method to perform accurate SOC estimation for Li-ion batteries using a recurrent neural network (RNN) with long short-term memory (LSTM) to showcase the LSTM-RNN's ability to encode dependencies in time and accurately estimate SOC without using any battery models, filters, or inference systems like Kalman filters.
Abstract: State of charge (SOC) estimation is critical to the safe and reliable operation of Li-ion battery packs, which nowadays are becoming increasingly used in electric vehicles (EVs), Hybrid EVs, unmanned aerial vehicles, and smart grid systems. We introduce a new method to perform accurate SOC estimation for Li-ion batteries using a recurrent neural network (RNN) with long short-term memory (LSTM). We showcase the LSTM-RNN's ability to encode dependencies in time and accurately estimate SOC without using any battery models, filters, or inference systems like Kalman filters. In addition, this machine-learning technique, like all others, is capable of generalizing the abstractions it learns during training to other datasets taken under different conditions. Therefore, we exploit this feature by training an LSTM-RNN model over datasets recorded at various ambient temperatures, leading to a single network that can properly estimate SOC at different ambient temperature conditions. The LSTM-RNN achieves a low mean absolute error (MAE) of 0.573% at a fixed ambient temperature and an MAE of 1.606% on a dataset with ambient temperature increasing from 10 to 25 $^{\circ }$ C.

436 citations

Journal ArticleDOI
TL;DR: This paper mainly focus on the application of deep learning architectures to three major applications, namely (i) wild animal detection, (ii) small arm detection and (iii) human being detection.
Abstract: Deep learning has developed as an effective machine learning method that takes in numerous layers of features or representation of the data and provides state-of-the-art results. The application of deep learning has shown impressive performance in various application areas, particularly in image classification, segmentation and object detection. Recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we provide a detailed review of various deep architectures and model highlighting characteristics of particular model. Firstly, we described the functioning of CNN architectures and its components followed by detailed description of various CNN models starting with classical LeNet model to AlexNet, ZFNet, GoogleNet, VGGNet, ResNet, ResNeXt, SENet, DenseNet, Xception, PNAS/ENAS. We mainly focus on the application of deep learning architectures to three major applications, namely (i) wild animal detection, (ii) small arm detection and (iii) human being detection. A detailed review summary including the systems, database, application and accuracy claimed is also provided for each model to serve as guidelines for future work in the above application areas.

435 citations


Cites background from "Deep learning"

  • ...Due to the success and rapid development of deep learning (DL) [1], a number of fields including robotics, medicine, biology, commerce, etc....

    [...]

Journal ArticleDOI
TL;DR: In this paper, machine learning techniques are used for quantum state tomography (QST) of highly entangled states, in both one and two dimensions, and the resulting approach allows one to reconstruct traditionally challenging many-body quantities - such as the entanglement entropy - from simple, experimentally accessible measurements.
Abstract: The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods, to validate and fully exploit quantum resources. Quantum-state tomography (QST) aims at reconstructing the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics. Brute-force approaches to QST, however, demand resources growing exponentially with the number of constituents, making it unfeasible except for small systems. Here we show that machine learning techniques can be efficiently used for QST of highly-entangled states, in both one and two dimensions. Remarkably, the resulting approach allows one to reconstruct traditionally challenging many-body quantities - such as the entanglement entropy - from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultra-cold atom quantum simulators.

434 citations

Journal ArticleDOI
TL;DR: Deep stacked autoencoder (SAE) is introduced for soft sensor and shows that the proposed VW-SAE can give better prediction performance than the traditional multilayer neural networks and SAE.
Abstract: In modern industrial processes, soft sensors have played an important role for effective process control, optimization, and monitoring. Feature representation is one of the core factors to construct accurate soft sensors. Recently, deep learning techniques have been developed for high-level abstract feature extraction in pattern recognition areas, which also have great potential for soft sensing applications. Hence, deep stacked autoencoder (SAE) is introduced for soft sensor in this paper. As for output prediction purpose, traditional deep learning algorithms cannot extract high-level output-related features. Thus, a novel variable-wise weighted stacked autoencoder (VW-SAE) is proposed for hierarchical output-related feature representation layer by layer. By correlation analysis with the output variable, important variables are identified from other ones in the input layer of each autoencoder. The variables are assigned with different weights accordingly. Then, variable-wise weighted autoencoders are designed and stacked to form deep networks. An industrial application shows that the proposed VW-SAE can give better prediction performance than the traditional multilayer neural networks and SAE.

434 citations

Journal ArticleDOI
TL;DR: This survey presents various ML-based algorithms for WSNs with their advantages, drawbacks, and parameters effecting the network lifetime, covering the period from 2014–March 2018.

434 citations

References
More filters
Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Abstract: We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.

23,814 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations