scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep learning applications and challenges in big data analytics

24 Feb 2015-Journal of Big Data (Springer International Publishing)-Vol. 2, Iss: 1, pp 1-21
TL;DR: This study explores how Deep Learning can be utilized for addressing some important problems in Big Data Analytics, including extracting complex patterns from massive volumes of data, semantic indexing, data tagging, fast information retrieval, and simplifying discriminative tasks.
Abstract: Big Data Analytics and Deep Learning are two high-focus of data science. Big Data has become important as many organizations both public and private have been collecting massive amounts of domain-specific information, which can contain useful information about problems such as national intelligence, cyber security, fraud detection, marketing, and medical informatics. Companies such as Google and Microsoft are analyzing large volumes of data for business analysis and decisions, impacting existing and future technology. Deep Learning algorithms extract high-level, complex abstractions as data representations through a hierarchical learning process. Complex abstractions are learnt at a given level based on relatively simpler abstractions formulated in the preceding level in the hierarchy. A key benefit of Deep Learning is the analysis and learning of massive amounts of unsupervised data, making it a valuable tool for Big Data Analytics where raw data is largely unlabeled and un-categorized. In the present study, we explore how Deep Learning can be utilized for addressing some important problems in Big Data Analytics, including extracting complex patterns from massive volumes of data, semantic indexing, data tagging, fast information retrieval, and simplifying discriminative tasks. We also investigate some aspects of Deep Learning research that need further exploration to incorporate specific challenges introduced by Big Data Analytics, including streaming data, high-dimensional data, scalability of models, and distributed computing. We conclude by presenting insights into relevant future works by posing some questions, including defining data sampling criteria, domain adaptation modeling, defining criteria for obtaining useful data abstractions, improving semantic indexing, semi-supervised learning, and active learning.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work was supported in part by the Royal Society of the UK, the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany.

2,404 citations


Cites background from "Deep learning applications and chal..."

  • ...In fact, due to its ability to handle large amounts of unlabeled data, deep learning techniques have provided powerful tools to deal with big data analysis [31,122]....

    [...]

Journal ArticleDOI
TL;DR: A survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges indicates that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

2,100 citations


Cites background from "Deep learning applications and chal..."

  • ...To the authors’ knowledge, this is the first such survey in the agricultural domain, while a small number of more general surveys do exist (Deng and Yu, 2014; Wan et al., 2014; Najafabadi et al., 2015), covering related work in DL in other domains....

    [...]

  • ...For a more elaborate description of the DL concept and its applications, the reader could refer to existing bibliography (Schmidhuber, 2015; Deng and Yu, 2014; Wan et al., 2014; Najafabadi et al., 2015; Canziani et al., 2016; Bahrampour et al., 2015)....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey on adversarial attacks on deep learning in computer vision can be found in this paper, where the authors review the works that design adversarial attack, analyze the existence of such attacks and propose defenses against them.
Abstract: Deep learning is at the heart of the current rise of artificial intelligence. In the field of computer vision, it has become the workhorse for applications ranging from self-driving cars to surveillance and security. Whereas, deep neural networks have demonstrated phenomenal success (often beyond human capabilities) in solving complex problems, recent studies show that they are vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrect outputs. For images, such perturbations are often too small to be perceptible, yet they completely fool the deep learning models. Adversarial attacks pose a serious threat to the success of deep learning in practice. This fact has recently led to a large influx of contributions in this direction. This paper presents the first comprehensive survey on adversarial attacks on deep learning in computer vision. We review the works that design adversarial attacks, analyze the existence of such attacks and propose defenses against them. To emphasize that adversarial attacks are possible in practical conditions, we separately review the contributions that evaluate adversarial attacks in the real-world scenarios. Finally, drawing on the reviewed literature, we provide a broader outlook of this research direction.

1,542 citations

Journal ArticleDOI
TL;DR: Examination of existing deep learning techniques for addressing class imbalanced data finds that research in this area is very limited, that most existing work focuses on computer vision tasks with convolutional neural networks, and that the effects of big data are rarely considered.
Abstract: The purpose of this study is to examine existing deep learning techniques for addressing class imbalanced data. Effective classification with imbalanced data is an important area of research, as high class imbalance is naturally inherent in many real-world applications, e.g., fraud detection and cancer detection. Moreover, highly imbalanced data poses added difficulty, as most learners will exhibit bias towards the majority class, and in extreme cases, may ignore the minority class altogether. Class imbalance has been studied thoroughly over the last two decades using traditional machine learning models, i.e. non-deep learning. Despite recent advances in deep learning, along with its increasing popularity, very little empirical work in the area of deep learning with class imbalance exists. Having achieved record-breaking performance results in several complex domains, investigating the use of deep neural networks for problems containing high levels of class imbalance is of great interest. Available studies regarding class imbalance and deep learning are surveyed in order to better understand the efficacy of deep learning when applied to class imbalanced data. This survey discusses the implementation details and experimental results for each study, and offers additional insight into their strengths and weaknesses. Several areas of focus include: data complexity, architectures tested, performance interpretation, ease of use, big data application, and generalization to other domains. We have found that research in this area is very limited, that most existing work focuses on computer vision tasks with convolutional neural networks, and that the effects of big data are rarely considered. Several traditional methods for class imbalance, e.g. data sampling and cost-sensitive learning, prove to be applicable in deep learning, while more advanced methods that exploit neural network feature learning abilities show promising results. The survey concludes with a discussion that highlights various gaps in deep learning from class imbalanced data for the purpose of guiding future research.

1,377 citations

Journal ArticleDOI
TL;DR: Deep Convolutional Neural Networks (CNNs) as mentioned in this paper are a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing.
Abstract: Deep Convolutional Neural Network (CNN) is a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing. Some of the exciting application areas of CNN include Image Classification and Segmentation, Object Detection, Video Processing, Natural Language Processing, and Speech Recognition. The powerful learning ability of deep CNN is primarily due to the use of multiple feature extraction stages that can automatically learn representations from the data. The availability of a large amount of data and improvement in the hardware technology has accelerated the research in CNNs, and recently interesting deep CNN architectures have been reported. Several inspiring ideas to bring advancements in CNNs have been explored, such as the use of different activation and loss functions, parameter optimization, regularization, and architectural innovations. However, the significant improvement in the representational capacity of the deep CNN is achieved through architectural innovations. Notably, the ideas of exploiting spatial and channel information, depth and width of architecture, and multi-path information processing have gained substantial attention. Similarly, the idea of using a block of layers as a structural unit is also gaining popularity. This survey thus focuses on the intrinsic taxonomy present in the recently reported deep CNN architectures and, consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature-map exploitation, channel boosting, and attention. Additionally, the elementary understanding of CNN components, current challenges, and applications of CNN are also provided.

1,328 citations

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Deep learning applications and chal..." refers background in this paper

  • ...Previous works used to adapt hand designed feature for images like SIFT and HOG to the video domain....

    [...]

  • ...For example, the Histogram of Oriented Gradients (HOG) [2] and Scale Invariant Feature Transform (SIFT) [3] are popular feature engineering algorithms developed specifically for the computer vision domain....

    [...]

Posted Content
TL;DR: This paper proposed two novel model architectures for computing continuous vector representations of words from very large data sets, and the quality of these representations is measured in a word similarity task and the results are compared to the previously best performing techniques based on different types of neural networks.
Abstract: We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.

20,077 citations

Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989 citations


"Deep learning applications and chal..." refers background in this paper

  • ...Previous works used to adapt hand designed feature for images like SIFT and HOG to the video domain....

    [...]

  • ...For example, the Histogram of Oriented Gradients (HOG) [2] and Scale Invariant Feature Transform (SIFT) [3] are popular feature engineering algorithms developed specifically for the computer vision domain....

    [...]

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations