scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep Learning in Mobile and Wireless Networking: A Survey

TL;DR: This paper bridges the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas, and provides an encyclopedic review of mobile and Wireless networking research based on deep learning, which is categorize by different domains.
Abstract: The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques, in order to help manage the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper, we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The concept of federated learning (FL) as mentioned in this paperederated learning has been proposed to enable collaborative training of an ML model and also enable DL for mobile edge network optimization in large-scale and complex mobile edge networks, where heterogeneous devices with varying constraints are involved.
Abstract: In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloud-based Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.

895 citations

Posted Content
TL;DR: In a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved, this raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale.
Abstract: In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL

701 citations


Cites methods from "Deep Learning in Mobile and Wireles..."

  • ...For example, DL can be used for representation learning of network conditions [29] whereas Deep Reinforcement...

    [...]

Journal ArticleDOI
TL;DR: A literature review on recent applications and design aspects of the intelligent reflecting surface (IRS) in the future wireless networks, and the joint optimization of the IRS’s phase control and the transceivers’ transmission control in different network design problems, e.g., rate maximization and power minimization problems.
Abstract: This paper presents a literature review on recent applications and design aspects of the intelligent reflecting surface (IRS) in the future wireless networks. Conventionally, the network optimization has been limited to transmission control at two endpoints, i.e., end users and network controller. The fading wireless channel is uncontrollable and becomes one of the main limiting factors for performance improvement. The IRS is composed of a large array of scattering elements, which can be individually configured to generate additional phase shifts to the signal reflections. Hence, it can actively control the signal propagation properties in favor of signal reception, and thus realize the notion of a smart radio environment. As such, the IRS’s phase control, combined with the conventional transmission control, can potentially bring performance gain compared to wireless networks without IRS. In this survey, we first introduce basic concepts of the IRS and the realizations of its reconfigurability. Then, we focus on applications of the IRS in wireless communications. We overview different performance metrics and analytical approaches to characterize the performance improvement of IRS-assisted wireless networks. To exploit the performance gain, we discuss the joint optimization of the IRS’s phase control and the transceivers’ transmission control in different network design problems, e.g., rate maximization and power minimization problems. Furthermore, we extend the discussion of IRS-assisted wireless networks to some emerging use cases. Finally, we highlight important practical challenges and future research directions for realizing IRS-assisted wireless networks in beyond 5G communications.

642 citations


Cites background from "Deep Learning in Mobile and Wireles..."

  • ...The large number of scattering elements and their sensing capabilities further imply that rich information can be collected during channel sensing, providing the possibility for data-driven DL approaches [10], [174], [175], [199]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey of ML methods and recent advances in DL methods that can be used to develop enhanced security methods for IoT systems and presents the opportunities, advantages and shortcomings of each method.
Abstract: The Internet of Things (IoT) integrates billions of smart devices that can communicate with one another with minimal human intervention. IoT is one of the fastest developing fields in the history of computing, with an estimated 50 billion devices by the end of 2020. However, the crosscutting nature of IoT systems and the multidisciplinary components involved in the deployment of such systems have introduced new security challenges. Implementing security measures, such as encryption, authentication, access control, network and application security for IoT devices and their inherent vulnerabilities is ineffective. Therefore, existing security methods should be enhanced to effectively secure the IoT ecosystem. Machine learning and deep learning (ML/DL) have advanced considerably over the last few years, and machine intelligence has transitioned from laboratory novelty to practical machinery in several important applications. Consequently, ML/DL methods are important in transforming the security of IoT systems from merely facilitating secure communication between devices to security-based intelligence systems. The goal of this work is to provide a comprehensive survey of ML methods and recent advances in DL methods that can be used to develop enhanced security methods for IoT systems. IoT security threats that are related to inherent or newly introduced threats are presented, and various potential IoT system attack surfaces and the possible threats related to each surface are discussed. We then thoroughly review ML/DL methods for IoT security and present the opportunities, advantages and shortcomings of each method. We discuss the opportunities and challenges involved in applying ML/DL to IoT security. These opportunities and challenges can serve as potential future research directions.

543 citations


Cites background from "Deep Learning in Mobile and Wireles..."

  • ...On the other hand, recent advancements in computational capability of tiny devices and in several ML/DL implementation platforms can result in successful implementation of these methods in onboard devices, such as smartphones [266] or in fog and edge computing platforms [266]....

    [...]

Journal ArticleDOI
TL;DR: It will be shown that the data-driven approaches should not replace, but rather complement, traditional design techniques based on mathematical models in future wireless communication networks.
Abstract: This paper deals with the use of emerging deep learning techniques in future wireless communication networks. It will be shown that the data-driven approaches should not replace, but rather complement, traditional design techniques based on mathematical models. Extensive motivation is given for why deep learning based on artificial neural networks will be an indispensable tool for the design and operation of future wireless communication networks, and our vision of how artificial neural networks should be integrated into the architecture of future wireless communication networks is presented. A thorough description of deep learning methodologies is provided, starting with the general machine learning paradigm, followed by a more in-depth discussion about deep learning and artificial neural networks, covering the most widely used artificial neural network architectures and their training methods. Deep learning will also be connected to other major learning frameworks, such as reinforcement learning and transfer learning. A thorough survey of the literature on deep learning for wireless communication networks is provided, followed by a detailed description of several novel case studies wherein the use of deep learning proves extremely useful for network design. For each case study, it will be shown how the use of (even approximate) mathematical models can significantly reduce the amount of live data that needs to be acquired/measured to implement the data-driven approaches. Finally, concluding remarks describe those that, in our opinion, are the major directions for future research in this field.

366 citations


Cites background from "Deep Learning in Mobile and Wireles..."

  • ...Only a few very recent overview works focus specifically on deep learning and ANNs for wireless communications [24], [41], [42]....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations


"Deep Learning in Mobile and Wireles..." refers background or methods in this paper

  • ...Adam [113] Employs a momentum mechanism to store an exponentially decaying average of past gradients • Learning rate stailored to each parameter • Good at handling sparse gradients and non-stationary problems • Memory-efficient • Fast convergence • It may turn unstable during training...

    [...]

  • ...Adaptive Learning Rate SGD Algorithms: Kingma and Ba propose an adaptive learning rate optimizer named Adam, which incorporates momentum by the first-order moment of the gradient [113]....

    [...]

  • ...Fast optimization algorithms Nesterov [111], Adagrad [112], RMSprop, Adam [113] Training deep architectures Accelerate and stabilize the model optimization process Medium Associated with hardware Low (software)...

    [...]

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations


"Deep Learning in Mobile and Wireles..." refers background or methods in this paper

  • ... high-level features from data that has complex structure and inner correlations. The learning process does not need to be designed by a human, which tremendously simplifies prior feature handcrafting [20]. The importance of this is amplified in the context of mobile networks, as mobile data is usually generated by heterogeneous sources, is often noisy, and exhibits non-trivial spatial/temporal patterns...

    [...]

  • ...iew of the organization of this survey. [23], [24]). LeCun et al. give a milestone overview of deep learning, introduce several popular models, and look ahead at the potential of deep neural networks [20]. Schmidhuber undertakes an encyclopedic survey of deep learning, likely the most comprehensive thus far, covering the evolution, methods, applications, and open research issues [21]. Liu et al. summa...

    [...]

  • ... from the following perspectives: (i) We particularly focus on deep learning applications for mobile network analysis and management, instead of broadly discussing deep learning methods (as, e.g., in [20], [21]) or centering on a single application domain, e.g. mobile big data analysis with a specific platform [17]. (ii) We discuss cutting-edge deep learning techniques from the perspective of mobile ne...

    [...]

  • ... both deep learning and mobile networks are shaded. Publication One-sentence summary Scope Machine learning Mobile networking Deep learning Other ML methods Mobile big data 5G technology LeCun et al. [20] A milestone overview of deep learning. D Schmidhuber [21] A comprehensive deep learning survey. D Liu et al. [22] A survey on deep learning and its applications. D Deng et al. [23] An overview of dee...

    [...]

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations