scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep learning with coherent nanophotonic circuits

01 Jul 2017-Vol. 11, Iss: 7, pp 441-446
TL;DR: A new architecture for a fully optical neural network is demonstrated that enables a computational speed enhancement of at least two orders of magnitude and three order of magnitude in power efficiency over state-of-the-art electronics.
Abstract: Artificial Neural Networks have dramatically improved performance for many machine learning tasks. We demonstrate a new architecture for a fully optical neural network that enables a computational speed enhancement of at least two orders of magnitude and three orders of magnitude in power efficiency over state-of-the-art electronics.
Citations
More filters
Journal ArticleDOI
13 Jul 2021
TL;DR: In this paper, it was shown that the Clements scheme can be realized using symmetric Mach-Zehnders, requiring only a small number of external phase-shifters that do not contribute to the depth of the circuit.
Abstract: Quantum integrated photonics requires large-scale linear optical circuitry, and for many applications, it is desirable to have a universally programmable circuit, able to implement an arbitrary unitary transformation on a number of modes. This has been achieved using the Reck scheme, consisting of a network of Mach–Zehnder interferometers containing a variable phase shifter in one path as well as an external phase shifter after each Mach–Zehnder. It subsequently became apparent that with symmetric Mach–Zehnders containing a phase shifter in both paths, the external phase shifters are redundant, resulting in a more compact circuit. The rectangular Clements scheme improves on the Reck scheme in terms of circuit depth, but it has been thought that an external phase-shifter was necessary after each Mach–Zehnder. Here, we show that the Clements scheme can be realized using symmetric Mach–Zehnders, requiring only a small number of external phase-shifters that do not contribute to the depth of the circuit. This will result in a significant saving in the length of these devices, allowing more complex circuits to fit onto a photonic chip, and reducing the propagation losses associated with these circuits. We also discuss how similar savings can be made to alternative schemes, which have robustness to imbalanced beam-splitters.

9 citations

Journal ArticleDOI
TL;DR: In this paper , the authors proposed a quantum Wasserstein generative adversarial network (qWGAN) which takes advantage of the quantum earth mover's (EM) distance and provides an efficient means of performing learning on quantum data.
Abstract: Quantifying how far the output of a learning algorithm is from its target is an essential task in machine learning. However, in quantum settings, the loss landscapes of commonly used distance metrics often produce undesirable outcomes such as poor local minima and exponentially decaying gradients. To overcome these obstacles, we consider here the recently proposed quantum earth mover's (EM) or Wasserstein-1 distance as a quantum analog to the classical EM distance. We show that the quantum EM distance possesses unique properties, not found in other commonly used quantum distance metrics, that make quantum learning more stable and efficient. We propose a quantum Wasserstein generative adversarial network (qWGAN) which takes advantage of the quantum EM distance and provides an efficient means of performing learning on quantum data. We provide examples where our qWGAN is capable of learning a diverse set of quantum data with only resources polynomial in the number of qubits.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a deep learning inverse network approach is proposed to design arbitrary transmission matrices using patterns of weakly scattering perturbations, allowing control over both the intensity and the phase in a multiport device at a four orders reduced device footprint compared to conventional technologies, thus, opening the door for large-scale integrated universal networks.
Abstract: Recent breakthroughs in photonics-based quantum, neuromorphic, and analogue processing have pointed out the need for new schemes for fully programmable nanophotonic devices. Universal optical elements based on interferometer meshes are underpinning many of these new technologies, however, this is achieved at the cost of an overall footprint that is very large compared to the limited chip real estate, restricting the scalability of this approach. Here, we consider an ultracompact platform for low-loss programmable elements using the complex transmission matrix of a multiport multimode waveguide. We propose a deep learning inverse network approach to design arbitrary transmission matrices using patterns of weakly scattering perturbations. The demonstrated technique allows control over both the intensity and the phase in a multiport device at a four orders reduced device footprint compared to conventional technologies, thus, opening the door for large-scale integrated universal networks.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a dual-band two-mode (de)-multiplexer based on tapered asymmetric directional coupler (ADC) is demonstrated, which relies on the conversion of the fundamental transverse electric (TE0) mode to the first order (TE1) mode.
Abstract: We demonstrate a dual-band two-mode (de)-multiplexer based on tapered asymmetric directional coupler (ADC). The working principle of the device relies on the conversion of the fundamental transverse electric (TE0) mode to the first order (TE1) mode. A phase-matching condition is applied across the O- and C-bands to broaden the operation wavelength of the device. Measurement performed on a mode division multiplexing (MDM) link formed by a back-to-back connected multiplexer and demultiplexer exhibited an insertion loss of less than 1.2 dB with cross talk better than 16 dB. The response is recorded over dual-bands, each with 100-nm bandwidth covering 1260-1360 nm and 1500–1600 nm (extends to the near L-band). The device is compact with an overall length of 75 μm.

9 citations

Journal ArticleDOI
TL;DR: In this paper , the authors provide the reader with the fundamental notions of machine learning and neural networks and present the main AI applications in the fields of spectroscopy and chemometrics, computational imaging (CI), wavefront shaping and quantum optics.
Abstract: The last decades saw a huge rise of artificial intelligence (AI) as a powerful tool to boost industrial and scientific research in a broad range of fields. AI and photonics are developing a promising two‐way synergy: on the one hand, AI approaches can be used to control a number of complex linear and nonlinear photonic processes, both in the classical and quantum regimes; on the other hand, photonics can pave the way for a new class of platforms to accelerate AI‐tasks. This review provides the reader with the fundamental notions of machine learning (ML) and neural networks (NNs) and presents the main AI applications in the fields of spectroscopy and chemometrics, computational imaging (CI), wavefront shaping and quantum optics. The review concludes with an overview of future developments of the promising synergy between AI and photonics.

9 citations

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations


"Deep learning with coherent nanopho..." refers background or methods in this paper

  • ...The computational resolution of ONNs is limited by practical non-idealities, including (1) thermal crosstalk between phase shifters in interferometers, (2) optical coupling drift, (3) the finite precision with which an optical phase can be set (16 bits in our case), (4) photodetection noise and (5) finite photodetection dynamic range (30 dB in our case)....

    [...]

  • ...(3) Once a neural network is trained, the architecture can be passive, and computation on the optical signals will be performed without additional energy input....

    [...]

  • ...We used four instances of the OIU to realize the following matrix transformations in the spatial-mode basis: (1) U((1))Σ((1)), (2) V((1)), (3) U((2))Σ((2)) and (4) V((2))....

    [...]

  • ...Transformations (1) and (2) realize the first matrix M((1)), and (3) and (4) implement M((2))....

    [...]

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations


"Deep learning with coherent nanopho..." refers methods in this paper

  • ...ANNs can be trained by feeding training data into the input layer and then computing the output by forward propagation; weighting parameters in each matrix are subsequently optimized using back propagation [16]....

    [...]