scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep learning with coherent nanophotonic circuits

01 Jul 2017-Vol. 11, Iss: 7, pp 441-446
TL;DR: A new architecture for a fully optical neural network is demonstrated that enables a computational speed enhancement of at least two orders of magnitude and three order of magnitude in power efficiency over state-of-the-art electronics.
Abstract: Artificial Neural Networks have dramatically improved performance for many machine learning tasks. We demonstrate a new architecture for a fully optical neural network that enables a computational speed enhancement of at least two orders of magnitude and three orders of magnitude in power efficiency over state-of-the-art electronics.
Citations
More filters
Journal ArticleDOI
TL;DR: A simplified photonic reservoir computing scheme for data classification of severely distorted optical communication signals after extended fibre transmission is introduced, which demonstrates an improvement in bit-error-rate by two orders of magnitude compared to directly classifying the transmitted signal.
Abstract: Machine learning techniques have proven very efficient in assorted classification tasks. Nevertheless, processing time-dependent high-speed signals can turn into an extremely challenging task, especially when these signals have been nonlinearly distorted. Recently, analogue hardware concepts using nonlinear transient responses have been gaining significant interest for fast information processing. Here, we introduce a simplified photonic reservoir computing scheme for data classification of severely distorted optical communication signals after extended fibre transmission. To this end, we convert the direct bit detection process into a pattern recognition problem. Using an experimental implementation of our photonic reservoir computer, we demonstrate an improvement in bit-error-rate by two orders of magnitude, compared to directly classifying the transmitted signal. This improvement corresponds to an extension of the communication range by over 75%. While we do not yet reach full real-time post-processing at telecom rates, we discuss how future designs might close the gap.

135 citations

Journal ArticleDOI
TL;DR: Through numerical simulation and analysis, the QONN is trained to perform a range of quantum information processing tasks, including newly developed protocols for quantum optical state compression, reinforcement learning, black-box quantum simulation, and one-way quantum repeaters.
Abstract: Physically motivated quantum algorithms for specific near-term quantum hardware will likely be the next frontier in quantum information science. Here, we show how many of the features of neural networks for machine learning can naturally be mapped into the quantum optical domain by introducing the quantum optical neural network (QONN). Through numerical simulation and analysis we train the QONN to perform a range of quantum information processing tasks, including newly developed protocols for quantum optical state compression, reinforcement learning, black-box quantum simulation, and one-way quantum repeaters. We consistently demonstrate that our system can generalize from only a small set of training data onto inputs for which it has not been trained. Our results indicate that QONNs are a powerful design tool for quantum optical systems and, leveraging advances in integrated quantum photonics, a promising architecture for next-generation quantum processors.

135 citations

Journal ArticleDOI
TL;DR: In this article, the synergy between quantitative phase imaging and machine learning with a particular focus on deep learning is discussed, and a practical guidelines and perspectives for further development are provided for further improvement.
Abstract: Recent advances in quantitative phase imaging (QPI) and artificial intelligence (AI) have opened up the possibility of an exciting frontier. The fast and label-free nature of QPI enables the rapid generation of large-scale and uniform-quality imaging data in two, three, and four dimensions. Subsequently, the AI-assisted interrogation of QPI data using data-driven machine learning techniques results in a variety of biomedical applications. Also, machine learning enhances QPI itself. Herein, we review the synergy between QPI and machine learning with a particular focus on deep learning. Furthermore, we provide practical guidelines and perspectives for further development.

134 citations

Journal ArticleDOI
TL;DR: The introduction of an integrated photonics-based tensor core unit supported by numerical simulations shows that photonic specialized processors have the potential to augment electronic systems and may perform exceptionally well in network-edge devices in the looming 5G networks and beyond.
Abstract: With an ongoing trend in computing hardware toward increased heterogeneity, domain-specific coprocessors are emerging as alternatives to centralized paradigms. The tensor core unit has been shown to outperform graphic processing units by almost 3 orders of magnitude, enabled by a stronger signal and greater energy efficiency. In this context, photons bear several synergistic physical properties while phase-change materials allow for local nonvolatile mnemonic functionality in these emerging distributed non-von Neumann architectures. While several photonic neural network designs have been explored, a photonic tensor core to perform tensor operations is yet to be implemented. In this manuscript, we introduce an integrated photonics-based tensor core unit by strategically utilizing (i) photonic parallelism via wavelength division multiplexing, (ii) high 2 peta-operations-per-second throughputs enabled by tens of picosecond-short delays from optoelectronics and compact photonic integrated circuitry, and (iii) near-zero static power-consuming novel photonic multi-state memories based on phase-change materials featuring vanishing losses in the amorphous state. Combining these physical synergies of material, function, and system, we show, supported by numerical simulations, that the performance of this 4-bit photonic tensor core unit can be 1 order of magnitude higher for electrical data. The full potential of this photonic tensor processor is delivered for optical data being processed, where we find a 2–3 orders higher performance (operations per joule), as compared to an electrical tensor core unit, while featuring similar chip areas. This work shows that photonic specialized processors have the potential to augment electronic systems and may perform exceptionally well in network-edge devices in the looming 5G networks and beyond.

134 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the performance metrics of waveguide-coupled superconducting detectors and compare them with dielectric waveguide material systems and present prominent emerging applications.
Abstract: Abstract Integration of superconducting nanowire single-photon detectors with nanophotonic waveguides is a key technological step that enables a broad range of classical and quantum technologies on chip-scale platforms. The excellent detection efficiency, timing and noise performance of these detectors have sparked growing interest over the last decade and have found use in diverse applications. Almost 10 years after the first waveguide-coupled superconducting detectors were proposed, here, we review the performance metrics of these devices, compare both superconducting and dielectric waveguide material systems and present prominent emerging applications.

131 citations


Additional excerpts

  • ...To satisfy the requirement for energy-efficient interconnection of a large number of processing units (neurons), photonics has been proposed as a platform for the realization of tailored hardware for neuromorphic computing [270]....

    [...]

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations


"Deep learning with coherent nanopho..." refers background or methods in this paper

  • ...The computational resolution of ONNs is limited by practical non-idealities, including (1) thermal crosstalk between phase shifters in interferometers, (2) optical coupling drift, (3) the finite precision with which an optical phase can be set (16 bits in our case), (4) photodetection noise and (5) finite photodetection dynamic range (30 dB in our case)....

    [...]

  • ...(3) Once a neural network is trained, the architecture can be passive, and computation on the optical signals will be performed without additional energy input....

    [...]

  • ...We used four instances of the OIU to realize the following matrix transformations in the spatial-mode basis: (1) U((1))Σ((1)), (2) V((1)), (3) U((2))Σ((2)) and (4) V((2))....

    [...]

  • ...Transformations (1) and (2) realize the first matrix M((1)), and (3) and (4) implement M((2))....

    [...]

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations


"Deep learning with coherent nanopho..." refers methods in this paper

  • ...ANNs can be trained by feeding training data into the input layer and then computing the output by forward propagation; weighting parameters in each matrix are subsequently optimized using back propagation [16]....

    [...]