scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deep learning with coherent nanophotonic circuits

01 Jul 2017-Vol. 11, Iss: 7, pp 441-446
TL;DR: A new architecture for a fully optical neural network is demonstrated that enables a computational speed enhancement of at least two orders of magnitude and three order of magnitude in power efficiency over state-of-the-art electronics.
Abstract: Artificial Neural Networks have dramatically improved performance for many machine learning tasks. We demonstrate a new architecture for a fully optical neural network that enables a computational speed enhancement of at least two orders of magnitude and three orders of magnitude in power efficiency over state-of-the-art electronics.
Citations
More filters
Journal ArticleDOI
TL;DR: An all-optical setup demonstrating kernel-based quantum machine learning for two-dimensional classification problems using specialized multiphoton quantum optical circuits exhibits exponentially better scaling in the required number of qubits than a direct generalization of kernels described in the literature.
Abstract: We implement an all-optical setup demonstrating kernel-based quantum machine learning for two-dimensional classification problems. In this hybrid approach, kernel evaluations are outsourced to projective measurements on suitably designed quantum states encoding the training data, while the model training is processed on a classical computer. Our two-photon proposal encodes data points in a discrete, eight-dimensional feature Hilbert space. In order to maximize the application range of the deployable kernels, we optimize feature maps towards the resulting kernels' ability to separate points, i.e., their "resolution," under the constraint of finite, fixed Hilbert space dimension. Implementing these kernels, our setup delivers viable decision boundaries for standard nonlinear supervised classification tasks in feature space. We demonstrate such kernel-based quantum machine learning using specialized multiphoton quantum optical circuits. The deployed kernel exhibits exponentially better scaling in the required number of qubits than a direct generalization of kernels described in the literature.

52 citations

Journal ArticleDOI
Shaofu Xu1, Jing Wang1, Rui Wang1, Jiangping Chen1, Weiwen Zou1 
TL;DR: Besides the effectiveness and high accuracy, the simplified OCU architecture served as a building block could be easily duplicated and integrated to future chip-scale optical CNNs.
Abstract: Optical neural networks (ONNs) have become competitive candidates for the next generation of high-performance neural network accelerators because of their low power consumption and high-speed nature. Beyond fully-connected neural networks demonstrated in pioneer works, optical computing hardwares can also conduct convolutional neural networks (CNNs) by hardware reusing. Following this concept, we propose an optical convolution unit (OCU) architecture. By reusing the OCU architecture with different inputs and weights, convolutions with arbitrary input sizes can be done. A proof-of-concept experiment is carried out by cascaded acousto-optical modulator arrays. When the neural network parameters are ex-situ trained, the OCU conducts convolutions with SDR up to 28.22 dBc and performs well on inferences of typical CNN tasks. Furthermore, we conduct in situ training and get higher SDR at 36.27 dBc, verifying the OCU could be further refined by in situ training. Besides the effectiveness and high accuracy, the simplified OCU architecture served as a building block could be easily duplicated and integrated to future chip-scale optical CNNs.

52 citations


Cites methods from "Deep learning with coherent nanopho..."

  • ...Optical technologies including spatial light diffraction [15– 18], on-chip coherent interference [19], wavelength division multiplexing [20,21] were utilized to demonstrate the feasibility of optical neural networks (ONNs)....

    [...]

  • ...Instead of calculation of the gradients of all parameters at a time by back-propagation [25], the forward-propagation algorithm updates one parameter every single time as the following formulas [19]:...

    [...]

Journal ArticleDOI
TL;DR: In this article, the recent progress made toward the exploitation of 2DMs beyond graphene for photonic memristors applications is reviewed, as well as their application in photonic synapse and pattern recognition.
Abstract: Abstract Photonic computing and neuromorphic computing are attracting tremendous interests in breaking the memory wall of traditional von Neumann architecture. Photonic memristors equipped with light sensing, data storage, and information processing capabilities are important building blocks of optical neural network. In the recent years, two-dimensional materials (2DMs) have been widely investigated for photonic memristor applications, which offer additional advantages in geometry scaling and distinct applications in terms of wide detectable spectrum range and abundant structural designs. Herein, the recent progress made toward the exploitation of 2DMs beyond graphene for photonic memristors applications are reviewed, as well as their application in photonic synapse and pattern recognition. Different materials and device structures are discussed in terms of their light tuneable memory behavior and underlying resistive switching mechanism. Following the discussion and classification on the device performances and mechanisms, the challenges facing this rapidly progressing research field are discussed, and routes to realize commercially viable 2DMs photonic memristors are proposed.

52 citations

Journal ArticleDOI
TL;DR: Two concurrent demonstrations of programmable photonic processors based on large meshes of interconnected waveguides on a silicon chip provide new hope for optical information processing.
Abstract: Two concurrent demonstrations of programmable photonic processors based on large meshes of interconnected waveguides on a silicon chip provide new hope for optical information processing.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the effects of architectural design on the robustness of optical neural networks to imprecise components and propose guidelines for the principled design of fault-tolerant ONNs.
Abstract: For the benefit of designing scalable, fault resistant optical neural networks (ONNs), we investigate the effects architectural designs have on the ONNs' robustness to imprecise components. We train two ONNs -- one with a more tunable design (GridNet) and one with better fault tolerance (FFTNet) -- to classify handwritten digits. When simulated without any imperfections, GridNet yields a better accuracy (~98%) than FFTNet (~95%). However, under a small amount of error in their photonic components, the more fault tolerant FFTNet overtakes GridNet. We further provide thorough quantitative and qualitative analyses of ONNs' sensitivity to varying levels and types of imprecisions. Our results offer guidelines for the principled design of fault-tolerant ONNs as well as a foundation for further research.

51 citations

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations


"Deep learning with coherent nanopho..." refers background or methods in this paper

  • ...The computational resolution of ONNs is limited by practical non-idealities, including (1) thermal crosstalk between phase shifters in interferometers, (2) optical coupling drift, (3) the finite precision with which an optical phase can be set (16 bits in our case), (4) photodetection noise and (5) finite photodetection dynamic range (30 dB in our case)....

    [...]

  • ...(3) Once a neural network is trained, the architecture can be passive, and computation on the optical signals will be performed without additional energy input....

    [...]

  • ...We used four instances of the OIU to realize the following matrix transformations in the spatial-mode basis: (1) U((1))Σ((1)), (2) V((1)), (3) U((2))Σ((2)) and (4) V((2))....

    [...]

  • ...Transformations (1) and (2) realize the first matrix M((1)), and (3) and (4) implement M((2))....

    [...]

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations


"Deep learning with coherent nanopho..." refers methods in this paper

  • ...ANNs can be trained by feeding training data into the input layer and then computing the output by forward propagation; weighting parameters in each matrix are subsequently optimized using back propagation [16]....

    [...]