scispace - formally typeset
Open AccessProceedings ArticleDOI

Deep Residual Learning for Image Recognition

Reads0
Chats0
TLDR
In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

ImageNet classification with deep convolutional neural networks

TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Proceedings ArticleDOI

Densely Connected Convolutional Networks

TL;DR: DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Journal ArticleDOI

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Posted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Book ChapterDOI

SSD: Single Shot MultiBox Detector

TL;DR: The approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, which makes SSD easy to train and straightforward to integrate into systems that require a detection component.
References
More filters
Posted Content

Network In Network

TL;DR: With enhanced local modeling via the micro network, the proposed deep network structure NIN is able to utilize global average pooling over feature maps in the classification layer, which is easier to interpret and less prone to overfitting than traditional fully connected layers.
Journal ArticleDOI

Modern Applied Statistics with S-Plus.

W. N. Venables, +1 more
- 01 Dec 1996 - 
Proceedings ArticleDOI

Vlfeat: an open and portable library of computer vision algorithms

TL;DR: VLFeat is an open and portable library of computer vision algorithms that includes rigorous implementations of common building blocks such as feature detectors, feature extractors, (hierarchical) k-means clustering, randomized kd-tree matching, and super-pixelization.

Pattern Recognition and Neural Networks

TL;DR: Title Type pattern recognition with neural networks in c++ PDF pattern recognition and neural networks PDF Neural networks for pattern recognition advanced texts in econometrics PDF neural networks for applied sciences and engineering from fundamentals to complex pattern recognition PDF
Proceedings Article

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

TL;DR: In this article, a multiscale and sliding window approach is proposed to predict object boundaries, which is then accumulated rather than suppressed in order to increase detection confidence, and OverFeat is the winner of the ImageNet Large Scale Visual Recognition Challenge 2013.
Related Papers (5)
Trending Questions (1)
What is the most effective learning framework?

The most effective learning framework is the residual learning framework, which is able to train deeper neural networks more easily.