scispace - formally typeset
Search or ask a question
Journal ArticleDOI

DeepTrio: a ternary prediction system for protein-protein interaction using mask multiple parallel convolutional neural networks.

25 Oct 2021-Bioinformatics (Oxford University Press (OUP))-
TL;DR: DeepTrio as mentioned in this paper uses mask multiple parallel convolutional neural networks for protein-protein interaction (PPI) prediction and achieves a better performance over several state-of-the-art methods in terms of various quality metrics.
Abstract: MOTIVATION Protein-protein interaction (PPI), as a relative property, is determined by two binding proteins, which brings a great challenge to design an expert model with an unbiased learning architecture and a superior generalization performance. Additionally, few efforts have been made to allow PPI predictors to discriminate between relative properties and intrinsic properties. RESULTS We present a sequence-based approach, DeepTrio, for PPI prediction using mask multiple parallel convolutional neural networks. Experimental evaluations show that DeepTrio achieves a better performance over several state-of-the-art methods in terms of various quality metrics. Besides, DeepTrio is extended to provide additional insights into the contribution of each input neuron to the prediction results. AVAILABILITY We provide an online application at http://bis.zju.edu.cn/deeptrio. The DeepTrio models and training data are deposited at https://github.com/huxiaoti/deeptrio.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of deep learning methods applied to problems including predicting protein functions, protein-protein interaction and their sites, proteinligand binding, and protein design can be found in this article .
Abstract: Most proteins perform their biological function by interacting with themselves or other molecules. Thus, one may obtain biological insights into protein functions, disease prevalence, and therapy development by identifying protein-protein interactions (PPI). However, finding the interacting and non-interacting protein pairs through experimental approaches is labour-intensive and time-consuming, owing to the variety of proteins. Hence, protein-protein interaction and protein-ligand binding problems have drawn attention in the fields of bioinformatics and computer-aided drug discovery. Deep learning methods paved the way for scientists to predict the 3-D structure of proteins from genomes, predict the functions and attributes of a protein, and modify and design new proteins to provide desired functions. This review focuses on recent deep learning methods applied to problems including predicting protein functions, protein-protein interaction and their sites, protein-ligand binding, and protein design.

14 citations

Journal ArticleDOI
TL;DR: In this article , a comprehensive introduction of deep learning in protein-protein interactions (PPIs) prediction, including the diverse learning architectures, benchmarks and extended applications, is presented, and readers are referred to the references therein.
Abstract: Protein-protein interactions (PPIs) play key roles in a broad range of biological processes. The disorder of PPIs often causes various physical and mental diseases, which makes PPIs become the focus of the research on disease mechanism and clinical treatment. Since a large number of PPIs have been identified by in vivo and in vitro experimental techniques, the increasing scale of PPI data with the inherent complexity of interacting mechanisms has encouraged a growing use of computational methods to predict PPIs. Until recently, deep learning plays an increasingly important role in the machine learning field due to its remarkable non-linear transformation ability. In this article, we aim to present readers with a comprehensive introduction of deep learning in PPI prediction, including the diverse learning architectures, benchmarks and extended applications.

10 citations

Journal ArticleDOI
TL;DR: The main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network are discussed, and visualization of these complex data is discussed.
Abstract: At the heart of the cellular machinery through the regulation of cellular functions, protein–protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.

2 citations

Journal ArticleDOI
TL;DR: ProtInteract as mentioned in this paper proposes an autoencoder-decoder architecture that encodes each protein's primary structure to a lower-dimensional vector while preserving its underlying sequence attributes.
Abstract: Proteins mainly perform their functions by interacting with other proteins. Protein–protein interactions underpin various biological activities such as metabolic cycles, signal transduction, and immune response. However, due to the sheer number of proteins, experimental methods for finding interacting and non-interacting protein pairs are time-consuming and costly. We therefore developed the ProtInteract framework to predict protein–protein interaction. ProtInteract comprises two components: first, a novel autoencoder architecture that encodes each protein’s primary structure to a lower-dimensional vector while preserving its underlying sequence attributes. This leads to faster training of the second network, a deep convolutional neural network (CNN) that receives encoded proteins and predicts their interaction under three different scenarios. In each scenario, the deep CNN predicts the class of a given encoded protein pair. Each class indicates different ranges of confidence scores corresponding to the probability of whether a predicted interaction occurs or not. The proposed framework features significantly low computational complexity and relatively fast response. The contributions of this work are twofold. First, ProtInteract assimilates the protein’s primary structure into a pseudo-time series. Therefore, we leverage the nature of the time series of proteins and their physicochemical properties to encode a protein’s amino acid sequence into a lower-dimensional vector space. This approach enables extracting highly informative sequence attributes while reducing computational complexity. Second, the ProtInteract framework utilises this information to identify protein interactions with other proteins based on its amino acid configuration. Our results suggest that the proposed framework performs with high accuracy and efficiency in predicting protein-protein interactions.

2 citations

Journal ArticleDOI
TL;DR: A brief review of sequence-based methods for protein-protein interactions (PPIs) can be found in this article , where the authors discuss key issues in this field and present future perspectives of the sequencebased PPPI predictions.
Abstract: The identification of protein–protein interactions (PPIs) can lead to a better understanding of cellular functions and biological processes of proteins and contribute to the design of drugs to target disease-causing PPIs. In addition, targeting host–pathogen PPIs is useful for elucidating infection mechanisms. Although several experimental methods have been used to identify PPIs, these methods can yet to draw complete PPI networks. Hence, computational techniques are increasingly required for the prediction of potential PPIs, which have never been seen experimentally. Recent high-performance sequence-based methods have contributed to the construction of PPI networks and the elucidation of pathogenetic mechanisms in specific diseases. However, the usefulness of these methods depends on the quality and quantity of training data of PPIs. In this brief review, we introduce currently available PPI databases and recent sequence-based methods for predicting PPIs. Also, we discuss key issues in this field and present future perspectives of the sequence-based PPI predictions.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Abstract: The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data. High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

37,861 citations

Journal ArticleDOI
TL;DR: The latest version of STRING more than doubles the number of organisms it covers, and offers an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input.
Abstract: Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein-protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein-protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.

10,584 citations

Journal ArticleDOI
TL;DR: Cd-hit-2d compares two protein datasets and reports similar matches between them; cd- Hit-est clusters a DNA/RNA sequence database and cd- hit-est-2D compares two nucleotide datasets.
Abstract: Motivation: In 2001 and 2002, we published two papers (Bioinformatics, 17, 282--283, Bioinformatics, 18, 77--82) describing an ultrafast protein sequence clustering program called cd-hit. This program can efficiently cluster a huge protein database with millions of sequences. However, the applications of the underlying algorithm are not limited to only protein sequences clustering, here we present several new programs using the same algorithm including cd-hit-2d, cd-hit-est and cd-hit-est-2d. Cd-hit-2d compares two protein datasets and reports similar matches between them; cd-hit-est clusters a DNA/RNA sequence database and cd-hit-est-2d compares two nucleotide datasets. All these programs can handle huge datasets with millions of sequences and can be hundreds of times faster than methods based on the popular sequence comparison and database search tools, such as BLAST. Availability: http://cd-hit.org Contact: [email protected]

8,306 citations