scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Defect physics of the CuInSe 2 chalcopyrite semiconductor

15 Apr 1998-Physical Review B (American Physical Society)-Vol. 57, Iss: 16, pp 9642-9656
TL;DR: In this article, the authors studied the defect physics in a chalcopyrite semiconductor and showed that it takes much less energy to form a Cu vacancy in the semiconductor than to form cation vacancies in II-VI compounds and that defect formation energies vary considerably both with the Fermi energy and with the chemical potential of the atomic species.
Abstract: We studied the defect physics in ${\mathrm{CuInSe}}_{2},$ a prototype chalcopyrite semiconductor. We showed that (i) it takes much less energy to form a Cu vacancy in ${\mathrm{CuInSe}}_{2}$ than to form cation vacancies in II-VI compounds (ii) defect formation energies vary considerably both with the Fermi energy and with the chemical potential of the atomic species, and (iii) the defect pairs such as $({2\mathrm{V}}_{\mathrm{Cu}}^{\mathrm{\ensuremath{-}}}{+\mathrm{I}\mathrm{n}}_{\mathrm{Cu}}^{2+})$ and $({2\mathrm{C}\mathrm{u}}_{\mathrm{In}}^{2\mathrm{\ensuremath{-}}}{+\mathrm{I}\mathrm{n}}_{\mathrm{Cu}}^{2+})$ have particularly low formation energies (under certain conditions, even exothermic). Using (i)--(iii), we (a) explain the existence of unusual ordered compounds ${\mathrm{CuIn}}_{5}{\mathrm{Se}}_{8},$ ${\mathrm{CuIn}}_{3}{\mathrm{Se}}_{5},$ ${\mathrm{Cu}}_{2}{\mathrm{In}}_{4}{\mathrm{Se}}_{7},$ and ${\mathrm{Cu}}_{3}{\mathrm{In}}_{5}{\mathrm{Se}}_{9}$ as a repeat of a single unit of $({2\mathrm{V}}_{\mathrm{Cu}}^{\mathrm{\ensuremath{-}}}{+\mathrm{I}\mathrm{n}}_{\mathrm{Cu}}^{2+})$ pairs for each $n=4,$ 5, 7, and 9 units, respectively, of ${\mathrm{CuInSe}}_{2};$ (b) attribute the very efficient $p$-type self-doping ability of ${\mathrm{CuInSe}}_{2}$ to the exceptionally low formation energy of the shallow defect Cu vacancies; (c) explained in terms of an electronic passivation of the ${\mathrm{In}}_{\mathrm{Cu}}^{2+}$ by ${2\mathrm{V}}_{\mathrm{Cu}}^{\mathrm{\ensuremath{-}}}$ the electrically benign character of the large defect population in ${\mathrm{CuInSe}}_{2}.$ Our calculation leads to a set of new assignment of the observed defect transition energy levels in the band gap. The calculated level positions agree rather well with available experimental data.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the defect properties of thin-film solar cells based on Methylammonium triiodideplumbate (CH3NH3PbI3) halide perovskites have been investigated.
Abstract: Thin-film solar cells based on Methylammonium triiodideplumbate (CH3NH3PbI3) halide perovskites have recently shown remarkable performance First-principle calculations show that CH3NH3PbI3 has unusual defect physics: (i) Different from common p-type thin-film solar cell absorbers, it exhibits flexible conductivity from good p-type, intrinsic to good n-type depending on the growth conditions; (ii) Dominant intrinsic defects create only shallow levels, which partially explain the long electron-hole diffusion length and high open-circuit voltage in solar cell The unusual defect properties can be attributed to the strong Pb lone-pair s orbital and I p orbital antibonding coupling and the high ionicity of CH3NH3PbI3

2,129 citations

Journal ArticleDOI
TL;DR: The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitized and organic photovoltaics as discussed by the authors, which can be realized in both mesoporous and thin-film device architectures.
Abstract: The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitized and organic photovoltaics. High-power conversion efficiency can be realized in both mesoporous and thin-film device architectures. We address the origin of this success in the context of the materials chemistry and physics of the bulk perovskite as described by electronic structure calculations. In addition to the basic optoelectronic properties essential for an efficient photovoltaic device (spectrally suitable band gap, high optical absorption, low carrier effective masses), the materials are structurally and compositionally flexible. As we show, hybrid perovskites exhibit spontaneous electric polarization; we also suggest ways in which this can be tuned through judicious choice of the organic cation. The presence of ferroelectric domains will result in internal junctions that may aid separation of photoexcited electron and hole pairs, and reduction of recombination through segregation...

2,052 citations

Journal ArticleDOI
TL;DR: Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4.
Abstract: Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries.

1,615 citations

Journal ArticleDOI
TL;DR: The calculated properties explain the experimental observation that Cu poor and Zn rich conditions result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high.
Abstract: The kesterite-structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth-abundant low-cost thin-film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chalcopyrite materials CuGaSe2 and CuInSe2 . Four features are revealed and highlighted: (i) the strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p-type conductivity determined by the high population of acceptor CuZn antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge-compensated defect clusters such as [2CuZn +SnZn ], [VCu +ZnCu ] and [ZnSn +2ZnCu ] and their contribution to non-stoichiometry; (iv) the electron-trapping effect of the abundant [2CuZn +SnZn ] clusters, especially in Cu2ZnSnS4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) ≈ 0.8 and Zn/Sn ≈ 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high.

1,139 citations

Journal ArticleDOI
TL;DR: In this article, the structural, electrical, and optical properties of halide perovskite materials in relation to their applications in solar cells are summarized and discussed, along with possible theoretical solutions.
Abstract: Halide perovskites have recently emerged as promising materials for low-cost, high-efficiency solar cells. The efficiency of perovskite-based solar cells has increased rapidly, from 3.8% in 2009 to 19.3% in 2014, by using the all-solid-state thin-film architecture and engineering cell structures with mixed-halide perovskites. The emergence of perovskite solar cells revolutionized the field not only because of their rapidly increased efficiency, but also flexibility in material growth and architecture. The superior performance of the perovskite solar cells suggested that perovskite materials possess intrinsically unique properties. In this review, we summarize recent theoretical investigations into the structural, electrical, and optical properties of halide perovskite materials in relation to their applications in solar cells. We also discuss some current challenges of using perovskites in solar cells, along with possible theoretical solutions.

1,066 citations