scispace - formally typeset
Search or ask a question

Delay-Tolerant Networking Architecture

TL;DR: This document describes an architecture that addresses a variety of problems with internetworks having operational and performance characteristics that make conventional (Internet-like) networking approaches either unworkable or impractical.
Abstract: This document describes an architecture for delay-tolerant and disruption-tolerant networks, and is an evolution of the architecture originally designed for the Interplanetary Internet, a communication system envisioned to provide Internet-like services across interplanetary distances in support of deep space exploration. This document describes an architecture that addresses a variety of problems with internetworks having operational and performance characteristics that make conventional (Internet-like) networking approaches either unworkable or impractical. We define a message- oriented overlay that exists above the transport (or other) layers of the networks it interconnects. The document presents a motivation for the architecture, an architectural overview, review of state management required for its operation, and a discussion of application design issues. This document represents the consensus of the IRTF DTN research group and has been widely reviewed by that group. This memo provides information for the Internet community.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
02 Mar 2009
TL;DR: This paper presents the Opportunistic Networking Environment (ONE) simulator specifically designed for evaluating DTN routing and application protocols, and shows sample simulations to demonstrate the simulator's flexible support for DTN protocol evaluation.
Abstract: Delay-tolerant Networking (DTN) enables communication in sparse mobile ad-hoc networks and other challenged environments where traditional networking fails and new routing and application protocols are required. Past experience with DTN routing and application protocols has shown that their performance is highly dependent on the underlying mobility and node characteristics. Evaluating DTN protocols across many scenarios requires suitable simulation tools. This paper presents the Opportunistic Networking Environment (ONE) simulator specifically designed for evaluating DTN routing and application protocols. It allows users to create scenarios based upon different synthetic movement models and real-world traces and offers a framework for implementing routing and application protocols (already including six well-known routing protocols). Interactive visualization and post-processing tools support evaluating experiments and an emulation mode allows the ONE simulator to become part of a real-world DTN testbed. We show sample simulations to demonstrate the simulator's flexible support for DTN protocol evaluation.

2,075 citations

Proceedings ArticleDOI
27 Aug 2007
TL;DR: The Data-Oriented Network Architecture (DONA) is proposed, which involves a clean-slate redesign of Internet naming and name resolution to adapt to changes in Internet usage.
Abstract: The Internet has evolved greatly from its original incarnation. For instance, the vast majority of current Internet usage is data retrieval and service access, whereas the architecture was designed around host-to-host applications such as telnet and ftp. Moreover, the original Internet was a purely transparent carrier of packets, but now the various network stakeholders use middleboxes to improve security and accelerate applications. To adapt to these changes, we propose the Data-Oriented Network Architecture (DONA), which involves a clean-slate redesign of Internet naming and name resolution.

1,643 citations


Additional excerpts

  • ..., [6,12,34])....

    [...]

Book
26 Aug 2021
TL;DR: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection.
Abstract: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in the UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate more than $45 Billion market value of UAV usage. In this paper, we present UAV civil applications and their challenges. We also discuss the current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including charging challenges, collision avoidance and swarming challenges, and networking and security-related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.

901 citations


Cites methods from "Delay-Tolerant Networking Architect..."

  • ...y. In this model, a UAV can store, carry and forward messages from source to destination with long term data storage and forwarding functions in order to compensate intermittent connectivity of links [330], [331]. DTN can be used with a set of protocols operating at MAC, transport and application layers to provide reliable data transport functions, such as Bundle Protocol (BP) [332], Licklider Transmis...

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey on the UAVs and the related issues will be introduced, the envisioned UAV-based architecture for the delivery of Uav-based value-added IoT services from the sky will be introduction, and the relevant key challenges and requirements will be presented.
Abstract: Recently, unmanned aerial vehicles (UAVs), or drones, have attracted a lot of attention, since they represent a new potential market. Along with the maturity of the technology and relevant regulations, a worldwide deployment of these UAVs is expected. Thanks to the high mobility of drones, they can be used to provide a lot of applications, such as service delivery, pollution mitigation, farming, and in the rescue operations. Due to its ubiquitous usability, the UAV will play an important role in the Internet of Things (IoT) vision, and it may become the main key enabler of this vision. While these UAVs would be deployed for specific objectives (e.g., service delivery), they can be, at the same time, used to offer new IoT value-added services when they are equipped with suitable and remotely controllable machine type communications (MTCs) devices (i.e., sensors, cameras, and actuators). However, deploying UAVs for the envisioned purposes cannot be done before overcoming the relevant challenging issues. These challenges comprise not only technical issues, such as physical collision, but also regulation issues as this nascent technology could be associated with problems like breaking the privacy of people or even use it for illegal operations like drug smuggling. Providing the communication to UAVs is another challenging issue facing the deployment of this technology. In this paper, a comprehensive survey on the UAVs and the related issues will be introduced. In addition, our envisioned UAV-based architecture for the delivery of UAV-based value-added IoT services from the sky will be introduced, and the relevant key challenges and requirements will be presented.

693 citations

Journal ArticleDOI
TL;DR: It is expected that key management, handling of congestion, multicasting capability, and routing will remain active areas of research and development, and that DTN may continue to be an active research endeavor for at least the next few years.
Abstract: We review the rationale behind the current design of the Delay/Disruption Tolerant Networking (DTN) Architecture and highlight some remaining open issues. Its evolution, from a focus on deep space to a broader class of heterogeneous networks that may suffer disruptions, affected design decisions spanning naming and addressing, message formats, data encoding methods, routing, congestion management and security. Having now achieved relative stability with the design, additional experience is required in long-running operational environments in order to fine tune our understanding of DTN concepts and the types of capabilities that are worth the investment in implementation complexity. We expect key management, handling of congestion, multicasting capability, and routing to remain active areas of research and development, and that DTN may continue to be an active research endeavor for at least the next few years.

470 citations


Cites background or methods from "Delay-Tolerant Networking Architect..."

  • ...This is useful in the common case for DTN where the source and report-to EIDs of the primary bundle block (and possibly the current custodian) may all contain the same URI, but is also made available for any block of the bundle to reference using offsets....

    [...]

  • ...In this paper we review many of the principles of the DTN architecture [1], highlighting design decisions that have persevered through repeated analyses, along with those that have been updated or replaced....

    [...]

References
More filters
Proceedings ArticleDOI
01 Aug 2000
TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Abstract: Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the directed diffusion paradigm for such coordination. Directed diffusion is datacentric in that all communication is for named data. All nodes in a directed diffusion-based network are application-aware. This enables diffusion to achieve energy savings by selecting empirically good paths and by caching and processing data in-network. We explore and evaluate the use of directed diffusion for a simple remote-surveillance sensor network.

6,061 citations


"Delay-Tolerant Networking Architect..." refers background in this paper

  • ..."expressions of interest" or forms of database-like queries as in a directed diffusion-routed network [IGE00] or in intentional naming [WSBL99]....

    [...]

Proceedings ArticleDOI
Kevin Fall1
25 Aug 2003
TL;DR: This work proposes a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources.
Abstract: The highly successful architecture and protocols of today's Internet may operate poorly in environments characterized by very long delay paths and frequent network partitions. These problems are exacerbated by end nodes with limited power or memory resources. Often deployed in mobile and extreme environments lacking continuous connectivity, many such networks have their own specialized protocols, and do not utilize IP. To achieve interoperability between them, we propose a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. The architecture operates as an overlay above the transport layers of the networks it interconnects, and provides key services such as in-network data storage and retransmission, interoperable naming, authenticated forwarding and a coarse-grained class of service.

3,511 citations


"Delay-Tolerant Networking Architect..." refers background in this paper

  • ...These factors are summarized below; much more detail on their rationale can be explored in [SB03], [KF03], and [DFS02]....

    [...]

  • ...- that packet switching is the most appropriate abstraction for interoperability and performance - that selecting a single route between sender and receiver is sufficient for achieving acceptable communication performance The DTN architecture is conceived to relax most of these assumptions, based on a number of design principles that are summarized here (and further discussed in [KF03]):...

    [...]

  • ...More technical descriptions may be found in [KF03], [JFP04], [JDPF05], and [WJMF05]....

    [...]

Journal ArticleDOI
TL;DR: This work identifies three fundamental principles that would underlie a delay-tolerant networking (DTN) architecture and describes the main structural elements of that architecture, centered on a new end-to-end overlay network protocol called Bundling.
Abstract: Increasingly, network applications must communicate with counterparts across disparate networking environments characterized by significantly different sets of physical and operational constraints; wide variations in transmission latency are particularly troublesome. The proposed Interplanetary Internet, which must encompass both terrestrial and interplanetary links, is an extreme case. An architecture based on a "least common denominator" protocol that can operate successfully and (where required) reliably in multiple disparate environments would simplify the development and deployment of such applications. The Internet protocols are ill suited for this purpose. We identify three fundamental principles that would underlie a delay-tolerant networking (DTN) architecture and describe the main structural elements of that architecture, centered on a new end-to-end overlay network protocol called Bundling. We also examine Internet infrastructure adaptations that might yield comparable performance but conclude that the simplicity of the DTN architecture promises easier deployment and extension.

1,419 citations

01 Nov 2007
TL;DR: This document describes the end-to-end protocol, header formats, and abstract service description for the exchange of messages (bundles) in Delay Tolerant Networking (DTN).
Abstract: This document describes the end-to-end protocol, header formats, and abstract service description for the exchange of messages (bundles) in Delay Tolerant Networking (DTN).

963 citations


"Delay-Tolerant Networking Architect..." refers background or methods in this paper

  • ...The bundles carried between and among DTN nodes obey a standard bundle protocol specified in [BSPEC]....

    [...]

  • ...The following BSRs are currently defined (also see [BSPEC] for more details):...

    [...]

  • ...As convergence layers implement protocols above and beyond the basic bundle protocol specified in [BSPEC], they will be defined in their own documents (in a fashion similar to the way encapsulations for IP datagrams are specified on a per-underlying-protocol basis, such as in RFC 894 [RFC894])....

    [...]

01 Apr 1981

929 citations


"Delay-Tolerant Networking Architect..." refers background in this paper

  • ...Administrative records correspond (approximately) to messages in the ICMP protocol in IP [RFC792]....

    [...]