scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification

09 Dec 1988-Nucleic Acids Research (Oxford University Press)-Vol. 16, Iss: 23, pp 11141-11156
TL;DR: This procedure utilizes simultaneous genomic DNA amplification of multiple widely separated sequences and should permit deletion scanning at any hemizygous locus and it is demonstrated the application of this multiplex reaction for prenatal and postnatal diagnosis of DMD.
Abstract: The application of recombinant DNA technology to prenatal diagnosis of many recessively inherited X-linked diseases is complicated by a high frequency of heterogeneous, new mutations (1). Partial gene deletions account for more than 50% of Duchenne muscular dystrophy (DMD) lesions, and approximately one-third of all cases result from a new mutation (2-5). We report the isolation and DNA sequence of several deletion prone exons from the human DMD gene. We also describe a rapid method capable of detecting the majority of deletions in the DMD gene. This procedure utilizes simultaneous genomic DNA amplification of multiple widely separated sequences and should permit deletion scanning at any hemizygous locus. We demonstrate the application of this multiplex reaction for prenatal and postnatal diagnosis of DMD.
Citations
More filters
Journal ArticleDOI
TL;DR: The 5'----3' exonuclease activity of the thermostable enzyme Thermus aquaticus DNA polymerase may be employed in a polymerase chain reaction product detection system to generate a specific detectable signal concomitantly with amplification.
Abstract: The 5'----3' exonuclease activity of the thermostable enzyme Thermus aquaticus DNA polymerase may be employed in a polymerase chain reaction product detection system to generate a specific detectable signal concomitantly with amplification. An oligonucleotide probe, nonextendable at the 3' end, labeled at the 5' end, and designed to hybridize within the target sequence, is introduced into the polymerase chain reaction assay. Annealing of probe to one of the polymerase chain reaction product strands during the course of amplification generates a substrate suitable for exonuclease activity. During amplification, the 5'----3' exonuclease activity of T. aquaticus DNA polymerase degrades the probe into smaller fragments that can be differentiated from undegraded probe. The assay is sensitive and specific and is a significant improvement over more cumbersome detection methods.

3,050 citations

Journal ArticleDOI
05 Sep 2008-Cell
TL;DR: The generation of induced pluripotent stem cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance are described, offering an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.

2,195 citations


Cites background or methods from "Deletion screening of the Duchenne ..."

  • ...Multiplex PCR analysis with primer sets amplifying several (but not all) intragenic intervals of the dystrophin gene (Beggs et al., 1990; Chamberlain et al., 1988) revealed the deletion of exons 45–52 in the iPS cells derived from a patient with Duchenne muscular dystrophy (DMD; Figure 1C)....

    [...]

  • ...The deletion of exons within the dystrophin gene in DMD-iPS cells and BMD-iPS cells was determined by PCR using Chamberlain or Beggs’ multiplex primer sets (Beggs et al., 1990; Chamberlain et al., 1988)....

    [...]

Journal ArticleDOI
01 Feb 1992-Genomics
TL;DR: The results suggest that trimeric and tetrameric STR loci are useful markers for the study of new mutations and genetic linkage analysis and for application to personal identification in the medical and forensic sciences.

1,474 citations

Journal ArticleDOI
TL;DR: The development, validation, and application of a multiplex PCR strategy that allows quick presumptive characterization of the mec element types based on the structural features that were shown to be typical of mec elements carried by several MRSA clones are reported.
Abstract: Full characterization of methicillin-resistant Staphylococcus aureus (MRSA) requires definition of not only the bacterial genetic background but also the structure of the complex and heterologous mec element these bacteria carry, which is associated with drug resistance determinant mecA. We report the development, validation, and application of a multiplex PCR strategy that allows quick presumptive characterization of the mec element types based on the structural features that were shown to be typical of mec elements carried by several MRSA clones. The strategy was validated by using a representative collection of pandemic MRSA clones in which the full structure of the associated mec elements was previously determined by hybridization and PCR screenings and also by DNA sequencing. The method was tested together with multilocus sequence typing and other typing methods for the characterization of 18 isolates representative of the MRSA clones recovered during a hospital outbreak in Barcelona, Spain. The multiplex PCR was shown to be rapid, robust, and capable in a single assay of identifying five structural types of the mec element among these strains, three major and two minor variants, each one of which has been already been seen among MRSA characterized earlier. This technique should be a useful addition to the armamentarium of molecular typing tools for the characterization of MRSA clonal types and for the rapid tentative identification of structural variants of the mec element.

1,403 citations


Cites methods from "Deletion screening of the Duchenne ..."

  • ...Multiplex PCR was first developed in 1988 by Chamberlain et al. ( 2 )....

    [...]

Journal ArticleDOI
TL;DR: The background, advantages and limitations of real-time PCR are described, the literature as it applies to virus detection in the routine and research laboratory is reviewed and the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.
Abstract: The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

1,341 citations

Trending Questions (1)
How many exons are in a DMD gene?

We also describe a rapid method capable of detecting the majority of deletions in the DMD gene.