scispace - formally typeset
Open AccessJournal ArticleDOI

Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations

Reads0
Chats0
TLDR
It is shown that single quantum bit operations, Bell-basis measurements and certain entangled quantum states such as Greenberger–Horne–Zeilinger (GHZ) states are sufficient to construct a universal quantum computer.
Abstract
Algorithms such as quantum factoring1 and quantum search2 illustrate the great theoretical promise of quantum computers; but the practical implementation of such devices will require careful consideration of the minimum resource requirements, together with the development of procedures to overcome inevitable residual imperfections in physical systems3,4,5 Many designs have been proposed, but none allow a large quantum computer to be built in the near future6 Moreover, the known protocols for constructing reliable quantum computers from unreliable components can be complicated, often requiring many operations to produce a desired transformation3,4,5,7,8 Here we show how a single technique—a generalization of quantum teleportation9—reduces resource requirements for quantum computers and unifies known protocols for fault-tolerant quantum computation We show that single quantum bit (qubit) operations, Bell-basis measurements and certain entangled quantum states such as Greenberger–Horne–Zeilinger (GHZ) states10—all of which are within the reach of current technology—are sufficient to construct a universal quantum computer We also present systematic constructions for an infinite class of reliable quantum gates that make the design of fault-tolerant quantum computers much more straightforward and methodical

read more

Citations
More filters
Journal ArticleDOI

Quantum entanglement

TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Journal ArticleDOI

A scheme for efficient quantum computation with linear optics.

TL;DR: It is shown that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors and are robust against errors from photon loss and detector inefficiency.
Journal ArticleDOI

The quantum internet

TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Journal ArticleDOI

A one-way quantum computer.

TL;DR: A scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states, which are thus one-way quantum computers and the measurements form the program.
References
More filters
Journal ArticleDOI

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels

TL;DR: An unknown quantum state \ensuremath{\Vert}\ensure Math{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations.
Journal ArticleDOI

Abundances of the elements: Meteoritic and solar

TL;DR: In this article, new abundance tables have been compiled for C1 chondrites and the solar photosphere and corona, based on a critical review of the literature to mid-1988.
Journal ArticleDOI

Experimental quantum teleportation

TL;DR: In this article, the authors demonstrated the feasibility of quantum teleportation over arbitrary distances of the state of a quantum system by using a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon.
Journal ArticleDOI

Elementary gates for quantum computation.

TL;DR: U(2) gates are derived, which derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number of unitary operations on arbitrarily many bits.
Journal ArticleDOI

Error Correcting Codes in Quantum Theory.

TL;DR: It is shown that a pair of states which are, in a certain sense, “macroscopically different,” can form a superposition in which the interference phase between the two parts is measurable, providing a highly stabilized “Schrodinger cat” state.
Related Papers (5)