scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Demonstration of the Casimir Force in the 0.6 to 6 μ m Range

06 Jan 1997-Physical Review Letters (American Physical Society)-Vol. 78, Iss: 1, pp 5-8
TL;DR: In this article, the vacuum stress between closely spaced conducting surfaces, due to the modification of the zero-point fluctuations of the electromagnetic field, has been conclusively demonstrated using an electromechanical system based on a torsion pendulum.
Abstract: The vacuum stress between closely spaced conducting surfaces, due to the modification of the zero-point fluctuations of the electromagnetic field, has been conclusively demonstrated. The measurement employed an electromechanical system based on a torsion pendulum. Agreement with theory at the level of 5% is obtained.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a guided tour through the development of artificial self-propelling microparticles and nanoparticles and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.
Abstract: Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachines hold a great potential as autonomous agents for health care, sustainability, and security applications. With a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.

2,188 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a review of both new experimental and theoretical developments in the Casimir effect, and provide the most recent constraints on the corrections to Newtonian gravitational law and other hypothetical long-range interactions at submillimeter range.

1,388 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the application of atomic physics to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics and test the principles of general relativity.
Abstract: Advances in atomic physics, such as cooling and trapping of atoms and molecules and developments in frequency metrology, have added orders of magnitude to the precision of atom-based clocks and sensors. Applications extend beyond atomic physics and this article reviews using these new techniques to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics, and test the principles of general relativity.

1,077 citations

Book ChapterDOI
TL;DR: The most famous effect was predicted in 1948 by Casimir, who found that there is an attractive force in quantum fields as mentioned in this paper, which is associated with topological constraints on quantum fields and is known as the Casimir effect.
Abstract: Casimir forces are associated with topological constraints on quantum fields. The most famous such effect was predicted in 1948 by Casimir, who found that there is an attractive force

1,066 citations

Journal ArticleDOI
TL;DR: In this article, a review of the cavity electrodynamics of free atoms is presented, with a focus on the one-atom maser and a survey of the entire field using free atoms.
Abstract: This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given.

981 citations