scispace - formally typeset
Open AccessProceedings ArticleDOI

Densely Connected Convolutional Networks

Reads0
Chats0
TLDR
DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Abstract
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Squeeze-and-Excitation Networks

TL;DR: This work proposes a novel architectural unit, which is term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels and finds that SE blocks produce significant performance improvements for existing state-of-the-art deep architectures at minimal additional computational cost.
Posted Content

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan, +1 more
- 28 May 2019 - 
TL;DR: A new scaling method is proposed that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient and is demonstrated the effectiveness of this method on scaling up MobileNets and ResNet.
Journal ArticleDOI

A survey on Image Data Augmentation for Deep Learning

TL;DR: This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing DataAugmentation, a data-space solution to the problem of limited data.
Posted Content

YOLOv4: Optimal Speed and Accuracy of Object Detection

TL;DR: This work uses new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, C mBN, DropBlock regularization, and CIoU loss, and combine some of them to achieve state-of-the-art results: 43.5% AP for the MS COCO dataset at a realtime speed of ~65 FPS on Tesla V100.
Posted Content

Squeeze-and-Excitation Networks

TL;DR: Squeeze-and-excitation (SE) as mentioned in this paper adaptively recalibrates channel-wise feature responses by explicitly modeling interdependencies between channels, which can be stacked together to form SENet architectures.
References
More filters

Reading Digits in Natural Images with Unsupervised Feature Learning

TL;DR: A new benchmark dataset for research use is introduced containing over 600,000 labeled digits cropped from Street View images, and variants of two recently proposed unsupervised feature learning methods are employed, finding that they are convincingly superior on benchmarks.
Proceedings Article

On the importance of initialization and momentum in deep learning

TL;DR: It is shown that when stochastic gradient descent with momentum uses a well-designed random initialization and a particular type of slowly increasing schedule for the momentum parameter, it can train both DNNs and RNNs to levels of performance that were previously achievable only with Hessian-Free optimization.
Proceedings Article

Striving for Simplicity: The All Convolutional Net

TL;DR: It is found that max-pooling can simply be replaced by a convolutional layer with increased stride without loss in accuracy on several image recognition benchmarks.
Posted Content

Wide Residual Networks

TL;DR: Wide residual networks (WRNs) as mentioned in this paper decrease the depth and increase the width of residual networks, which achieves state-of-the-art results on CIFAR, SVHN, and ImageNet.
Proceedings Article

The Cascade-Correlation Learning Architecture

TL;DR: The Cascade-Correlation architecture has several advantages over existing algorithms: it learns very quickly, the network determines its own size and topology, it retains the structures it has built even if the training set changes, and it requires no back-propagation of error signals through the connections of the network.
Related Papers (5)
Trending Questions (1)
How the densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation?

Densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation by alleviating the vanishing-gradient problem and strengthening feature propagation.