scispace - formally typeset
Open AccessProceedings ArticleDOI

Densely Connected Convolutional Networks

Reads0
Chats0
TLDR
DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Abstract
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Squeeze-and-Excitation Networks

TL;DR: This work proposes a novel architectural unit, which is term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels and finds that SE blocks produce significant performance improvements for existing state-of-the-art deep architectures at minimal additional computational cost.
Posted Content

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan, +1 more
- 28 May 2019 - 
TL;DR: A new scaling method is proposed that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient and is demonstrated the effectiveness of this method on scaling up MobileNets and ResNet.
Journal ArticleDOI

A survey on Image Data Augmentation for Deep Learning

TL;DR: This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing DataAugmentation, a data-space solution to the problem of limited data.
Posted Content

YOLOv4: Optimal Speed and Accuracy of Object Detection

TL;DR: This work uses new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, C mBN, DropBlock regularization, and CIoU loss, and combine some of them to achieve state-of-the-art results: 43.5% AP for the MS COCO dataset at a realtime speed of ~65 FPS on Tesla V100.
Posted Content

Squeeze-and-Excitation Networks

TL;DR: Squeeze-and-excitation (SE) as mentioned in this paper adaptively recalibrates channel-wise feature responses by explicitly modeling interdependencies between channels, which can be stacked together to form SENet architectures.
References
More filters
Proceedings Article

FitNets: Hints for Thin Deep Nets

TL;DR: This paper extends the idea of a student network that could imitate the soft output of a larger teacher network or ensemble of networks, using not only the outputs but also the intermediate representations learned by the teacher as hints to improve the training process and final performance of the student.
Proceedings Article

Network In Network

TL;DR: In this paper, a Network in Network (NIN) architecture is proposed to enhance model discriminability for local patches within the receptive field, where the feature maps are obtained by sliding the micro networks over the input in a similar manner as CNN, and then fed into the next layer.
Proceedings Article

Maxout Networks

TL;DR: A simple new model called maxout is defined designed to both facilitate optimization by dropout and improve the accuracy of dropout's fast approximate model averaging technique.
Proceedings ArticleDOI

Hypercolumns for object segmentation and fine-grained localization

TL;DR: In this paper, the authors define the hypercolumn at a pixel as the vector of activations of all CNN units above that pixel, and use hypercolumns as pixel descriptors.
Book ChapterDOI

Deep Networks with Stochastic Depth

TL;DR: Stochastic depth is proposed, a training procedure that enables the seemingly contradictory setup to train short networks and use deep networks at test time and reduces training time substantially and improves the test error significantly on almost all data sets that were used for evaluation.
Related Papers (5)
Trending Questions (1)
How the densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation?

Densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation by alleviating the vanishing-gradient problem and strengthening feature propagation.