scispace - formally typeset
Journal ArticleDOI: 10.1016/J.STEM.2020.11.003

Derivation of Intermediate Pluripotent Stem Cells Amenable to Primordial Germ Cell Specification

04 Mar 2021-Cell Stem Cell (Cell Press)-Vol. 28, Iss: 3
Abstract: Summary Dynamic pluripotent stem cell (PSC) states are in vitro adaptations of pluripotency continuum in vivo. Previous studies have generated a number of PSCs with distinct properties. To date, however, no known PSCs have demonstrated dual competency for chimera formation and direct responsiveness to primordial germ cell (PGC) specification, a unique functional feature of formative pluripotency. Here, by modulating fibroblast growth factor (FGF), transforming growth factor β (TGF-β), and WNT pathways, we derived PSCs from mice, horses, and humans (designated as XPSCs) that are permissive for direct PGC-like cell induction in vitro and are capable of contributing to intra- or inter-species chimeras in vivo. XPSCs represent a pluripotency state between naive and primed pluripotency and harbor molecular, cellular, and phenotypic features characteristic of formative pluripotency. XPSCs open new avenues for studying mammalian pluripotency and dissecting the molecular mechanisms governing PGC specification. Our method may be broadly applicable for the derivation of analogous stem cells from other mammalian species.

... read more

Topics: Induced pluripotent stem cell (57.99%), Stem cell (52%)
Citations
  More

36 results found


Open access
01 Jan 2011-
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

... read more

363 Citations


Journal ArticleDOI: 10.1038/S41586-021-03356-Y
Leqian Yu1, Yulei Wei2, Yulei Wei1, Jialei Duan1  +7 moreInstitutions (3)
25 Mar 2021-Nature
Abstract: Limited access to embryos has hampered the study of human embryogenesis and disorders that occur during early pregnancy. Human pluripotent stem cells provide an alternative means to study human development in a dish1–7. Recent advances in partial embryo models derived from human pluripotent stem cells have enabled human development to be examined at early post-implantation stages8–14. However, models of the pre-implantation human blastocyst are lacking. Starting from naive human pluripotent stem cells, here we developed an effective three-dimensional culture strategy with successive lineage differentiation and self-organization to generate blastocyst-like structures in vitro. These structures—which we term ‘human blastoids’—resemble human blastocysts in terms of their morphology, size, cell number, and composition and allocation of different cell lineages. Single-cell RNA-sequencing analyses also reveal the transcriptomic similarity of blastoids to blastocysts. Human blastoids are amenable to embryonic and extra-embryonic stem cell derivation and can further develop into peri-implantation embryo-like structures in vitro. Using chemical perturbations, we show that specific isozymes of protein kinase C have a critical function in the formation of the blastoid cavity. Human blastoids provide a readily accessible, scalable, versatile and perturbable alternative to blastocysts for studying early human development, understanding early pregnancy loss and gaining insights into early developmental defects. An in vitro culture strategy enables the generation of blastocyst-like structures termed human blastoids from naive human pluripotent stem cells, providing a model for studying human embryogenesis.

... read more

Topics: Embryonic stem cell (64%), Induced pluripotent stem cell (61%), Stem cell (59%) ... show more

50 Citations


Journal ArticleDOI: 10.1038/S41586-021-03273-0
28 Jan 2021-Nature
Abstract: Cell competition involves a conserved fitness-sensing process during which fitter cells eliminate neighbouring less-fit but viable cells1. Cell competition has been proposed as a surveillance mechanism to ensure normal development and tissue homeostasis, and has also been suggested to act as a barrier to interspecies chimerism2. However, cell competition has not been studied in an interspecies context during early development owing to the lack of an in vitro model. Here we developed an interspecies pluripotent stem cell (PSC) co-culture strategy and uncovered a previously unknown mode of cell competition between species. Interspecies competition between PSCs occurred in primed but not naive pluripotent cells, and between evolutionarily distant species. By comparative transcriptome analysis, we found that genes related to the NF-κB signalling pathway, among others, were upregulated in less-fit ‘loser’ human cells. Genetic inactivation of a core component (P65, also known as RELA) and an upstream regulator (MYD88) of the NF-κB complex in human cells could overcome the competition between human and mouse PSCs, thereby improving the survival and chimerism of human cells in early mouse embryos. These insights into cell competition pave the way for the study of evolutionarily conserved mechanisms that underlie competitive cell interactions during early mammalian development. Suppression of interspecies PSC competition may facilitate the generation of human tissues in animals. Primed pluripotent stem cells from distant species compete with each other, and inactivation of NF-κB signalling in normally outcompeted human cells improves their survival and chimerism in mouse embryos.

... read more

15 Citations


Open accessJournal ArticleDOI: 10.1038/S41422-021-00477-X
Xiaoxiao Wang1, Yunlong Xiang2, Yang Yu1, Ran Wang1  +16 moreInstitutions (4)
19 Feb 2021-Cell Research
Abstract: The pluripotency of mammalian early and late epiblast could be recapitulated by naive embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. However, these two states of pluripotency may not be sufficient to reflect the full complexity and developmental potency of the epiblast during mammalian early development. Here we report the establishment of self-renewing formative pluripotent stem cells (fPSCs) which manifest features of epiblast cells poised for gastrulation. fPSCs can be established from different mouse ESCs, pre-/early-gastrula epiblasts and induced PSCs. Similar to pre-/early-gastrula epiblasts, fPSCs show the transcriptomic features of formative pluripotency, which are distinct from naive ESCs and primed EpiSCs. fPSCs show the unique epigenetic states of E6.5 epiblast, including the super-bivalency of a large set of developmental genes. Just like epiblast cells immediately before gastrulation, fPSCs can efficiently differentiate into three germ layers and primordial germ cells (PGCs) in vitro. Thus, fPSCs highlight the feasibility of using PSCs to explore the development of mammalian epiblast.

... read more

Topics: Epiblast (63%), Gastrulation (56.99%), Germ layer (54%) ... show more

13 Citations


Open accessJournal ArticleDOI: 10.1038/S41467-021-23758-W
Abstract: Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development.

... read more

Topics: Hypoblast (66%), Epiblast (59%), Gastrulation (59%) ... show more

11 Citations


References
  More

84 results found


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTP352
Heng Li1, Bob Handsaker2, Alec Wysoker2, T. J. Fennell2  +5 moreInstitutions (4)
01 Aug 2009-Bioinformatics
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

... read more

Topics: Variant Call Format (62%), Stockholm format (61%), FASTQ format (56%) ... show more

35,747 Citations


Open accessJournal ArticleDOI: 10.1186/S13059-014-0550-8
05 Dec 2014-Genome Biology
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

... read more

Topics: MRNA Sequencing (54%), Integrator complex (51%), Count data (50%) ... show more

29,675 Citations


Open accessJournal ArticleDOI: 10.1038/NMETH.1923
01 Apr 2012-Nature Methods
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

... read more

27,973 Citations


Open accessJournal ArticleDOI: 10.1186/GB-2008-9-9-R137
Yong Zhang1, Tao Liu1, Clifford A. Meyer1, Jérôme Eeckhoute2  +8 moreInstitutions (5)
17 Sep 2008-Genome Biology
Abstract: We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms, and is freely available.

... read more

Topics: Peak calling (54%), Chromatin binding (51%)

9,966 Citations


Open accessJournal ArticleDOI: 10.1038/NBT.1754
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

... read more

8,527 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202133
20201
20112
Network Information
Related Papers (5)
Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency.04 Mar 2021, Cell Stem Cell

Masaki Kinoshita, Michael Barber +9 more

100% related
The ground state of embryonic stem cell self-renewal22 May 2008, Nature

Qi-Long Ying, Jason Wray +6 more

99% related
New cell lines from mouse epiblast share defining features with human embryonic stem cells12 Jul 2007, Nature

Paul J. Tesar, Josh G. Chenoweth +6 more

99% related
Derivation of pluripotent epiblast stem cells from mammalian embryos12 Jul 2007, Nature

I. Gabrielle M. Brons, Lucy E. Smithers +9 more

99% related