scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Derivation of pluripotent epiblast stem cells from mammalian embryos

TL;DR: It is shown that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells.
Abstract: Although the first mouse embryonic stem (ES) cell lines were derived 25 years ago using feeder-layer-based blastocyst cultures, subsequent efforts to extend the approach to other mammals, including both laboratory and domestic species, have been relatively unsuccessful. The most notable exceptions were the derivation of non-human primate ES cell lines followed shortly thereafter by their derivation of human ES cells. Despite the apparent common origin and the similar pluripotency of mouse and human embryonic stem cells, recent studies have revealed that they use different signalling pathways to maintain their pluripotent status. Mouse ES cells depend on leukaemia inhibitory factor and bone morphogenetic protein, whereas their human counterparts rely on activin (INHBA)/nodal (NODAL) and fibroblast growth factor (FGF). Here we show that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells. Our results demonstrate that activin/Nodal signalling has an evolutionarily conserved role in the derivation and the maintenance of pluripotency in these novel stem cells. Epiblast stem cells provide a valuable experimental system for determining whether distinctions between mouse and human embryonic stem cells reflect species differences or diverse temporal origins.
Citations
More filters
Journal ArticleDOI
15 Sep 2011-Nature
TL;DR: It is shown that Knockdown of lincRNAs has major consequences on gene expression patterns, comparable to knockdown of well-known ES cell regulators.
Abstract: Although thousands of large intergenic non-coding RNAs (lincRNAs) have been identified in mammals, few have been functionally characterized, leading to debate about their biological role. To address this, we performed loss-of-function studies on most lincRNAs expressed in mouse embryonic stem (ES) cells and characterized the effects on gene expression. Here we show that knockdown of lincRNAs has major consequences on gene expression patterns, comparable to knockdown of well-known ES cell regulators. Notably, lincRNAs primarily affect gene expression in trans. Knockdown of dozens of lincRNAs causes either exit from the pluripotent state or upregulation of lineage commitment programs. We integrate lincRNAs into the molecular circuitry of ES cells and show that lincRNA genes are regulated by key transcription factors and that lincRNA transcripts bind to multiple chromatin regulatory proteins to affect shared gene expression programs. Together, the results demonstrate that lincRNAs have key roles in the circuitry controlling ES cell state.

1,790 citations

Journal ArticleDOI
TL;DR: It is proposed that two phases of pluripotency can be defined: naive and primed, and this distinction extends to pluripotent stem cells derived from embryos or by molecular reprogramming ex vivo.

1,640 citations


Cites background or methods from "Derivation of pluripotent epiblast ..."

  • ...Indeed, it is now argued that these human cells are analogous to rodent EpiSCs (Brons et al., 2007; Rossant, 2008; Tesar et al., 2007)....

    [...]

  • ...Cell lines have now been derived from postimplantation mouse epiblasts using culture conditions without Lif but including Fgf and activin (Brons et al., 2007; Tesar et al., 2007)....

    [...]

Journal ArticleDOI
20 Dec 2007-Nature
TL;DR: By genetic deletion, it is shown that, although they are prone to differentiate, embryonic stem cells can self-renew indefinitely in the permanent absence of Nanog, and it is surmised that Nanog stabilizes embryonicstem cells in culture by resisting or reversing alternative gene expression states.
Abstract: Nanog is a divergent homeodomain protein found in mammalian pluripotent cells and developing germ cells. Deletion of Nanog causes early embryonic lethality, whereas constitutive expression enables autonomous self-renewal of embryonic stem cells. Nanog is accordingly considered a core element of the pluripotent transcriptional network. However, here we report that Nanog fluctuates in mouse embryonic stem cells. Transient downregulation of Nanog appears to predispose cells towards differentiation but does not mark commitment. By genetic deletion we show that, although they are prone to differentiate, embryonic stem cells can self-renew indefinitely in the permanent absence of Nanog. Expanded Nanog null cells colonize embryonic germ layers and exhibit multilineage differentiation both in fetal and adult chimaeras. Although they are also recruited to the germ line, primordial germ cells lacking Nanog fail to mature on reaching the genital ridge. This defect is rescued by repair of the mutant allele. Thus Nanog is dispensible for expression of somatic pluripotency but is specifically required for formation of germ cells. Nanog therefore acts primarily in construction of inner cell mass and germ cell states rather than in the housekeeping machinery of pluripotency. We surmise that Nanog stabilizes embryonic stem cells in culture by resisting or reversing alternative gene expression states.

1,540 citations

Journal ArticleDOI
22 Feb 2008-Cell
TL;DR: In this article, the authors review strategies to reprogram somatic cells to a pluripotent embryonic state and discuss their understanding of the molecular mechanisms of reprogramming based on recent insights into the regulatory circuitry of the PLSTM.

1,450 citations


Cites background from "Derivation of pluripotent epiblast ..."

  • ..., 2007) but similar to EpiSC cells, which were derived from the epiblast of postimplantation mouse embryos (Brons et al., 2007; Tesar et al., 2007)....

    [...]

  • ...…from testicular spermatogonial stem cells of adult mice, and these cells had an expression profile different from that of ES cells (Seandel et al., 2007) but similar to EpiSC cells, which were derived from the epiblast of postimplantation mouse embryos (Brons et al., 2007; Tesar et al., 2007)....

    [...]

Journal ArticleDOI
TL;DR: It is found that EPI cells and primary hESC outgrowth have dramatically different transcriptomes, with 1,498 genes showing differential expression between them, and this work provides a comprehensive framework of the transcriptome landscapes of human early embryos and hESCs.
Abstract: Measuring gene expression in individual cells is crucial for understanding the gene regulatory network controlling human embryonic development. Here we apply single-cell RNA sequencing (RNA-Seq) analysis to 124 individual cells from human preimplantation embryos and human embryonic stem cells (hESCs) at different passages. The number of maternally expressed genes detected in our data set is 22,687, including 8,701 long noncoding RNAs (lncRNAs), which represents a significant increase from 9,735 maternal genes detected previously by cDNA microarray. We discovered 2,733 novel lncRNAs, many of which are expressed in specific developmental stages. To address the long-standing question whether gene expression signatures of human epiblast (EPI) and in vitro hESCs are the same, we found that EPI cells and primary hESC outgrowth have dramatically different transcriptomes, with 1,498 genes showing differential expression between them. This work provides a comprehensive framework of the transcriptome landscapes of human early embryos and hESCs.

1,362 citations

References
More filters
Journal ArticleDOI
06 Nov 1998-Science
TL;DR: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages.
Abstract: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months, these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers, including gut epithelium (endoderm); cartilage, bone, smooth muscle, and striated muscle (mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology, drug discovery, and transplantation medicine.

15,555 citations

Journal ArticleDOI
09 Jul 1981-Nature
TL;DR: The establishment in tissue culture of pluripotent cell lines which have been isolated directly from in vitro cultures of mouse blastocysts are reported, able to differentiate either in vitro or after innoculation into a mouse as a tumour in vivo.
Abstract: Pluripotential cells are present in a mouse embryo until at least an early post-implantation stage, as shown by their ability to take part hi the formation of chimaeric animals1 and to form teratocarcinomas2. Until now it has not been possible to establish progressively growing cultures of these cells in vitro, and cell lines have only been obtained after teratocarcinoma formation in vivo. We report here the establishment in tissue culture of pluripotent cell lines which have been isolated directly from in vitro cultures of mouse blastocysts. These cells are able to differentiate either in vitro or after innoculation into a mouse as a tumour in vivo. They have a normal karyotype.

8,144 citations

Journal ArticleDOI
TL;DR: In this article, the authors described the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice and demonstrated the pluripotency of these embryonic stem cells by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types.
Abstract: This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.

5,496 citations

Journal ArticleDOI
23 Sep 2005-Cell
TL;DR: Insight is provided into the transcriptional regulation of stem cells and how OCT4, SOX2, and NANOG contribute to pluripotency and self-renewal and how they collaborate to form regulatory circuitry consisting of autoregulatory and feedforward loops.

4,447 citations

Journal ArticleDOI
TL;DR: A role is established for Oct-3/4 as a master regulator of pluripotency that controls lineage commitment and the sophistication of critical transcriptional regulators is illustrated and the consequent importance of quantitative analyses are illustrated.
Abstract: Cell fate during development is defined by transcription factors that act as molecular switches to activate or repress specific gene expression programmes. The POU transcription factor Oct-3/4 (encoded by Pou5f1) is a candidate regulator in pluripotent and germline cells and is essential for the initial formation of a pluripotent founder cell population in the mammalian embryo. Here we use conditional expression and repression in embryonic stem (ES) cells to determine requirements for Oct-3/4 in the maintenance of developmental potency. Although transcriptional determination has usually been considered as a binary on-off control system, we found that the precise level of Oct-3/4 governs three distinct fates of ES cells. A less than twofold increase in expression causes differentiation into primitive endoderm and mesoderm. In contrast, repression of Oct-3/4 induces loss of pluripotency and dedifferentiation to trophectoderm. Thus a critical amount of Oct-3/4 is required to sustain stem-cell self-renewal, and up- or downregulation induce divergent developmental programmes. Our findings establish a role for Oct-3/4 as a master regulator of pluripotency that controls lineage commitment and illustrate the sophistication of critical transcriptional regulators and the consequent importance of quantitative analyses.

3,745 citations