scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Design and Implementation of a Highly Efficient Three-Level T-Type Converter for Low-Voltage Applications

01 Feb 2013-IEEE Transactions on Power Electronics (IEEE)-Vol. 28, Iss: 2, pp 899-907
TL;DR: The 3LT2C as mentioned in this paper combines the positive aspects of the two-level converter such as low conduction losses, small part count and a simple operation principle with the advantages of the three-level converters such as the low switching losses and superior output voltage quality.
Abstract: The demand for lightweight converters with high control performance and low acoustic noise led to an increase in switching frequencies of hard switched two-level low-voltage 3-phase converters over the last years. For high switching frequencies, converter efficiency suffers and can be kept high only by employing cost intensive switch technology such as SiC diodes or CoolMOS switches; therefore, conventional IGBT technology still prevails. In this paper, the alternative of using three-level converters for low-voltage applications is addressed. The performance and the competitiveness of the three-level T-type converter (3LT2C) is analyzed in detail and underlined with a hardware prototype. The 3LT2 C basically combines the positive aspects of the two-level converter such as low conduction losses, small part count and a simple operation principle with the advantages of the three-level converter such as low switching losses and superior output voltage quality. It is, therefore, considered to be a real alternative to two-level converters for certain low-voltage applications.
Citations
More filters
Journal ArticleDOI
TL;DR: The generation mechanism of leakage current is investigated and the concepts of dc-based and ac-based decoupling networks are proposed to not only cover the published symmetrical inductor-based topologies but also offer an innovative strategy to derive advanced inverters.
Abstract: Single-phase voltage source transformerless inverters have been developed for many years and have been successful commercial applications in the distributed photovoltaic (PV) grid-connected systems. Moreover, many advanced industrial topologies and recent innovations have been published in the last few years. The objective of this paper is to classify and review these recent contributions to establish the present state of the art and trends of the transformerless inverters. This can provide a comprehensive and insightful overview of this technology. First, the generation mechanism of leakage current is investigated to divide the transformerless inverters into asymmetrical inductor-based and symmetrical inductor-based groups. Then, the concepts of dc-based and ac-based decoupling networks are proposed to not only cover the published symmetrical inductor-based topologies but also offer an innovative strategy to derive advanced inverters. Furthermore, the transformation principle between the dc-based and ac-based topologies is explored to make a clear picture on the general law and framework for the recent advances and future trend in this area. Finally, a family of clamped highly efficient and reliable inverter concept transformerless inverters is derived and tested to offer some excellent candidates for next-generation high-efficiency and cost-effective PV grid-tie inverters.

553 citations

Journal ArticleDOI
TL;DR: The development of MMC circuit topologies and their mathematical models over the years are presented and the evolution and technical challenges of the classical and model predictive control methods are discussed.
Abstract: Modular multilevel converter (MMC) is one of the most promising topologies for medium to high-voltage high-power applications. The main features of MMC are modularity, voltage and power scalability, fault tolerant and transformer-less operation, and high-quality output waveforms. Over the past few years, several research studies are conducted to address the technical challenges associated with the operation and control of the MMC. This paper presents the development of MMC circuit topologies and their mathematical models over the years. Also, the evolution and technical challenges of the classical and model predictive control methods are discussed. Finally, the MMC applications and their future trends are presented.

404 citations


Additional excerpts

  • ...Also, the devices in each leg should be designed with two times the voltage blocking capability of the NPC and ANPC SMs [61]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the performance of high voltage rectifiers and enhancement-mode metal-oxide field effect transistors on Ga2O3 has been evaluated and shown to benefit from the larger critical electric field relative to either SiC or GaN.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics with capabilities beyond existing technologies due to its large bandgap, controllable doping, and the availability of large diameter, relatively inexpensive substrates. These applications include power conditioning systems, including pulsed power for avionics and electric ships, solid-state drivers for heavy electric motors, and advanced power management and control electronics. Wide bandgap (WBG) power devices offer potential savings in both energy and cost. However, converters powered by WBG devices require innovation at all levels, entailing changes to system design, circuit architecture, qualification metrics, and even market models. The performance of high voltage rectifiers and enhancement-mode metal-oxide field effect transistors benefits from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. Reverse breakdown voltages of over 2 kV for β-Ga2O3 have been reported, either with or without edge termination and over 3 kV for a lateral field-plated Ga2O3 Schottky diode on sapphire. The metal-oxide-semiconductor field-effect transistors fabricated on Ga2O3 to date have predominantly been depletion (d-mode) devices, with a few demonstrations of enhancement (e-mode) operation. While these results are promising, what are the limitations of this technology and what needs to occur for it to play a role alongside the more mature SiC and GaN power device technologies? The low thermal conductivity might be mitigated by transferring devices to another substrate or thinning down the substrate and using a heatsink as well as top-side heat extraction. We give a perspective on the materials’ properties and physics of transport, thermal conduction, doping capabilities, and device design that summarizes the current limitations and future areas of development. A key requirement is continued interest from military electronics development agencies. The history of the power electronics device field has shown that new technologies appear roughly every 10-12 years, with a cycle of performance evolution and optimization. The older technologies, however, survive long into the marketplace, for various reasons. Ga2O3 may supplement SiC and GaN, but is not expected to replace them.

348 citations

Journal ArticleDOI
TL;DR: In this paper, a new topology of multilevel inverter is proposed as fundamental block and the proposed topology is generalized using series connection of the fundamental blocks, which has been analyzed in both symmetric and asymmetric operation modes.
Abstract: Nowadays, use of multilevel inverters in high-power applications clearly can be seen. High quality and lower distortion of the output voltage and low blocking voltage of semiconductor switches are being presented as the major privileges of the multilevel inverter compared to the traditional voltage source inverter. In this paper, a new topology of multilevel inverter is proposed as fundamental block. The proposed topology is generalized using series connection of the fundamental blocks. The proposed multilevel inverter has been analyzed in both symmetric and asymmetric operation modes. A great perfection in voltage levels number with minimum switching devices has been obtained in both symmetric and asymmetric modes. Thereafter, a detailed study of losses and peak inverse voltage (PIV) of the proposed multilevel inverter is given. Also, in continuation, a comparison between the proposed topology and the traditional one and a recently developed topology is carried out. Finally, a computer simulation using MATLAB/Simulink is presented and a laboratory prototype implementation verifies the results.

251 citations


Cites background from "Design and Implementation of a High..."

  • ...Some applications of new multilevel inverters include industrial drives with efficient operation and smaller size along with low cost such as newly developed T-Type converters [13], flexible ac transmission systems (FACTS) [14], and electrical vehicles [20]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors proposed modulation techniques to reduce the leakage current and balance the dc-link voltages in transformerless photovoltaic (PV) systems using three-level inverter.
Abstract: Transformerless topologies of many topologies are widely used in photovoltaic (PV) systems because these topologies have many advantages in terms of the weight, size, and efficiency. A three-level inverter has an outstanding performance and is advantageous in the switching device selection than a two-level inverter. In the transformerless PV systems using the three-level inverter, the PV systems should suffer from the leakage current and generate the neutral-point voltage unbalance. To solve two problems, this paper proposes modulation techniques to reduce the leakage current and balance the dc-link voltages. The cause of the leakage current in the three-level inverter is analyzed. The proposed technique LMZVM using the large, medium, and zero vectors reduces the common mode voltage that causes the leakage current than that of the conventional PWM. Moreover, the proposed technique LMSVM using the large, medium, and small vectors balances the dc-link voltages with reduced CMV as the same in LMZVM. The effectiveness of the proposed techniques is verified by comparing its results with those of the convectional PWM. The results are obtained through simulations and experiments.

219 citations


Cites background from "Design and Implementation of a High..."

  • ...Also, NPC-type which is one of three-level inverter topologies can cut VCE of the switching device in half [8] and T-type which is another topology can reduce the rate current and VCE of the switching device connecting the neutral-point [9]....

    [...]

References
More filters
01 Jan 1980
TL;DR: In this article, a neutral-point-clamped PWM inverter composed of main switching devices which operate as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential has been developed.
Abstract: A new neutral-point-clamped pulsewidth modulation (PWM) inverter composed of main switching devices which operate as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential has been developed. This inverter output contains less harmonic content as compared with that of a conventional type. Two inverters are compared analytically and experimentally. In addition, a new PWM technique suitable for an ac drive system is applied to this inverter. The neutral-point-clamped PWM inverter adopting the new PWM technique shows an excellent drive system efficiency, including motor efficiency, and is appropriate for a wide-range variable-speed drive system.

4,432 citations

Journal ArticleDOI
TL;DR: The neutral-point-clamped PWM inverter adopting the new PWM technique shows an excellent drive system efficiency, including motor efficiency, and is appropriate for a wide-range variable-speed drive system.
Abstract: A new neutral-point-clamped pulsewidth modulation (PWM) inverter composed of main switching devices which operate as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential has been developed. This inverter output contains less harmonic content as compared with that of a conventional type. Two inverters are compared analytically and experimentally. In addition, a new PWM technique suitable for an ac drive system is applied to this inverter. The neutral-point-clamped PWM inverter adopting the new PWM technique shows an excellent drive system efficiency, including motor efficiency, and is appropriate for a wide-range variable-speed drive system.

4,328 citations


"Design and Implementation of a High..." refers background in this paper

  • ...Compared to the three-level NPC topology [4], the T-...

    [...]

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations


"Design and Implementation of a High..." refers background in this paper

  • ...The T-type topology is also used in medium-voltage applications [14], [15] where it is known as neutral point piloted (NPP)...

    [...]

Journal ArticleDOI
TL;DR: A loss-balancing scheme is introduced, enabling a substantially increased output power and an improved performance at zero speed, compared to the conventional NPC VSC.
Abstract: The three-level neutral-point-clamped voltage-source converter (NPC VSC) is widely used in high-power medium-voltage applications. The unequal loss distribution among the semiconductors is one major disadvantage of this popular topology. This paper studies the loss distribution problem of the NPC VSC and proposes the active NPC VSC to overcome this drawback. The switch states and commutations of the converter are analyzed. A loss-balancing scheme is introduced, enabling a substantially increased output power and an improved performance at zero speed, compared to the conventional NPC VSC.

690 citations


"Design and Implementation of a High..." refers background in this paper

  • ...an alternative to more complex three-level topologies such as active neutral point clamped converters [9]–[11] or split-inductor converters [12], [13]....

    [...]

Journal ArticleDOI
07 Oct 1990
TL;DR: In this paper, the authors explore the dependency of the conduction losses of a bridge leg of a PWM power converter system with a high pulse rate on the shape of the phase modulation functions.
Abstract: The authors explore the dependency of the conduction losses of a bridge leg of a pulsewidth modulation (PWM) power converter system with a high pulse rate on the shape of the phase modulation functions. This is done for modulation methods that are optimized with respect to minimum harmonic current RMS values. The results are compared to the results gained for simple sinusoidal modulation. Besides conduction losses, the switching losses of the electric valves are calculated. The main topic is the determination of those power loss components of a PWM converter system that can be (besides the harmonic losses) influenced by the modulation method selected. As the calculations show, these modulation methods allow a significant increase of the effective switching frequency. The optimal modulation as calculated leads to a reduction of the harmonic power loss in the upper modulation region. Furthermore, due to the frequency modulation the spectrum is spread out to a wider frequency band as compared to operation with constant pulse frequency. >

571 citations


"Design and Implementation of a High..." refers background in this paper

  • ...The modulation strategy is an important point for the converter efficiency [18]....

    [...]