scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Design and optimal control of a tiltrotor micro-aerial vehicle for efficient omnidirectional flight:

06 Aug 2020-The International Journal of Robotics Research (SAGE PublicationsSage UK: London, England)-Vol. 39, pp 1305-1325
TL;DR: In this paper, an omnidirectional micro-aerial vehicle (MAV) is used for aerial interaction and uninhibited observation, which is a growing field of research.
Abstract: Omnidirectional micro-aerial vehicles (MAVs) are a growing field of research, with demonstrated advantages for aerial interaction and uninhibited observation. While systems with complete pose omnid...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of multi-rotor aerial vehicle designs on their abilities in terms of tasks and system properties is reviewed. And a general taxonomy is proposed to characterize and describe multirotor UAVs.
Abstract: This paper reviews the effect of multirotor aerial vehicle designs on their abilities in terms of tasks and system properties. We propose a general taxonomy to characterize and describe multirotor ...

54 citations

Journal ArticleDOI
TL;DR: A variable axis-selective impedance control is presented which integrates direct force control for intentional interaction, using feedback from an on-board force sensor, and is validated as a tool for nondestructive testing of concrete infrastructure.
Abstract: This article presents and validates active interaction force control and planning for fully actuated and omnidirectional aerial manipulation platforms, with the goal of aerial contact inspection in unstructured environments. We present a variable axis-selective impedance control which integrates direct force control for intentional interaction, using feedback from an on-board force sensor. The control approach aims to reject disturbances in free flight, while handling unintentional interaction and actively controlling desired interaction forces. A fully actuated and omnidirectional tilt-rotor aerial system is used to show capabilities of the control and planning methods. Experiments demonstrate disturbance rejection, push-and-slide interaction, and force-controlled interaction in different flight orientations. The system is validated as a tool for nondestructive testing of concrete infrastructure, and statistical results of interaction control performance are presented and discussed.

48 citations

Journal ArticleDOI
TL;DR: In this article, a variable axis-selective impedance control is proposed to reject disturbances in free flight, while handling unintentional interaction, and actively controlling desired interaction forces using feedback from an on-board force sensor.
Abstract: This paper presents and validates active interaction force control and planning for fully actuated and omnidirectional aerial manipulation platforms, with the goal of aerial contact inspection in unstructured environments. We present a variable axis-selective impedance control which integrates direct force control for intentional interaction, using feedback from an on-board force sensor. The control approach aims to reject disturbances in free flight, while handling unintentional interaction, and actively controlling desired interaction forces. A fully actuated and omnidirectional tilt-rotor aerial system is used to show capabilities of the control and planning methods. Experiments demonstrate disturbance rejection, push-and-slide interaction, and force controlled interaction in different flight orientations. The system is validated as a tool for non-destructive testing of concrete infrastructure, and statistical results of

35 citations

Journal ArticleDOI
16 Sep 2021-Sensors
TL;DR: A survey of recent developments in the field of unmanned aerial vehicles related to safe autonomous navigation can be found in this article, where a great part of the focus is on advanced methods capable of producing three-dimensional avoidance maneuvers and safe trajectories.
Abstract: Unmanned Aerial Vehicles have undergone rapid developments in recent decades. This has made them very popular for various military and civilian applications allowing us to reach places that were previously hard to reach in addition to saving time and lives. A highly desirable direction when developing unmanned aerial vehicles is towards achieving fully autonomous missions and performing their dedicated tasks with minimum human interaction. Thus, this paper provides a survey of some of the recent developments in the field of unmanned aerial vehicles related to safe autonomous navigation, which is a very critical component in the whole system. A great part of this paper focus on advanced methods capable of producing three-dimensional avoidance maneuvers and safe trajectories. Research challenges related to unmanned aerial vehicle development are also highlighted.

25 citations

Journal ArticleDOI
04 Aug 2021
TL;DR: In this paper, an aerial manipulation platform consisting of a parallel 3-DOF manipulator mounted to an omnidirectional tilt-rotor aerial vehicle is presented, where the manipulator is coupled to the base pose controller with a dynamic compensation term.
Abstract: To address the challenge of precise, dynamic and versatile aerial manipulation, we present an aerial manipulation platform consisting of a parallel 3-DOF manipulator mounted to an omnidirectional tilt-rotor aerial vehicle. The general modeling of a parallel manipulator on an omnidirectional floating base is presented, which motivates the optimization and detailed design of the aerial manipulator parameters and components. Inverse kinematic control of the manipulator is coupled to the omnidirectional base pose controller with a dynamic compensation term, going beyond common decoupled approaches. This presents a baseline for the control of redundant omnidirectional aerial manipulators. Experimental flights show the advantages of an active manipulator vs. a fixed arm for disturbance rejection and end effector tracking performance, as well as the practical limitations of the dynamic compensation term for fast end effector trajectories. The results motivate future studies for precise and dynamic aerial manipulation.

14 citations

References
More filters
Journal ArticleDOI
TL;DR: The additional set of four control inputs actuating the propeller tilting angles is shown to yield full actuation to the quadrotor position/orientation in space, thus allowing it to behave as a fully actuated flying vehicle.
Abstract: Standard quadrotor unmanned aerial vehicles (UAVs) possess a limited mobility because of their inherent underactuation, that is, availability of four independent control inputs (the four propeller spinning velocities) versus the 6 degrees of freedom parameterizing the quadrotor position/orientation in space. Thus, the quadrotor pose cannot track arbitrary trajectories in space (e.g., it can hover on the spot only when horizontal). Because UAVs are more and more employed as service robots for interaction with the environment, this loss of mobility due to their underactuation can constitute a limiting factor. In this paper, we present a novel design for a quadrotor UAV with tilting propellers which is able to overcome these limitations. Indeed, the additional set of four control inputs actuating the propeller tilting angles is shown to yield full actuation to the quadrotor position/orientation in space, thus allowing it to behave as a fully actuated flying vehicle. We then develop a comprehensive modeling and control framework for the proposed quadrotor, and subsequently illustrate the hardware and software specifications of an experimental prototype. Finally, the results of several simulations and real experiments are reported to illustrate the capabilities of the proposed novel UAV design.

299 citations

Journal ArticleDOI
TL;DR: This brief describes robust adaptive tracking control systems for the attitude dynamics of a rigid body that can asymptotically follow an attitude command without the knowledge of the inertia matrix and is extended to guarantee boundedness of tracking errors in the presence of unstructured disturbances.
Abstract: This brief describes robust adaptive tracking control systems for the attitude dynamics of a rigid body. Both the attitude dynamics and the proposed control system are globally expressed on the special orthogonal group, to avoid complexities and ambiguities associated with other attitude representations, such as Euler angles or quaternions. By designing an adaptive law for the inertia matrix of a rigid body, the proposed control system can asymptotically follow an attitude command without the knowledge of the inertia matrix, and it is extended to guarantee boundedness of tracking errors in the presence of unstructured disturbances. These are illustrated by the experimental results of the attitude dynamics of a quadrotor unmanned aerial vehicle.

252 citations

Proceedings ArticleDOI
16 May 2016
TL;DR: An eight-rotor configuration is derived that maximizes the vehicle's agility in any direction and possesses full force and torque authority in all three dimensions of the proposed six degrees-of-freedom aerial vehicle.
Abstract: In this paper we present the design and control of a novel six degrees-of-freedom aerial vehicle. Based on a static force and torque analysis for generic actuator configurations, we derive an eight-rotor configuration that maximizes the vehicle's agility in any direction. The proposed vehicle design possesses full force and torque authority in all three dimensions. A control strategy that allows for exploiting the vehicle's decoupled translational and rotational dynamics is introduced. A prototype of the proposed vehicle design is built using reversible motor-propeller actuators and capable of flying at any orientation. Preliminary experimental results demonstrate the feasibility of the novel design and the capabilities of the vehicle.

221 citations

Journal ArticleDOI
TL;DR: Voliro is presented, a novel aerial platform that combines the advantages of existing multirotor systems with the agility of vehicles having omniorientational controllability, so that Voliro can fly in any direction while maintaining an arbitrary orientation.
Abstract: Extending the maneuverability of multirotors promises to yield a considerable increase in their scope of applications, such as carrying out more challenging inspection tasks and generating complex, uninterrupted movements of an attached camera. In this article, we address the promise of multirotor maneuverability by presenting Voliro, a novel aerial platform that combines the advantages of existing multirotor systems with the agility of vehicles having omniorientational controllability. In other words, Voliro can fly in any direction while maintaining an arbitrary orientation.

168 citations

Journal ArticleDOI
TL;DR: This article summarizes new aerial robotic manipulation technologies and methods-aerial robotic manipulators with dual arms and multidirectional thrusters-developed in the AEROARMS project for outdoor industrial inspection and maintenance (I&M).
Abstract: This article summarizes new aerial robotic manipulation technologies and methods-aerial robotic manipulators with dual arms and multidirectional thrusters-developed in the AEROARMS project for outdoor industrial inspection and maintenance (IaM).

167 citations