scispace - formally typeset
Proceedings ArticleDOI

Design of a Computationally Economical Image Classifier using Generic Features

Reads0
Chats0
TLDR
An image classification technique which uses a simple autoencoder with a regularizer and a significant reduction of training time with respect to a complex CNN, which can be used for image classification with much reduced requirement of computational capability.
Abstract
In this paper, we propose an image classification technique which uses a simple autoencoder with a regularizer. Nowadays, Convolutional Neural Networks (CNN) are primarily used for image classification. Our method can be used for image classification with much reduced requirement of computational capability than a complex CNN which has a huge number of degrees of freedom. Here, the terms simple and complex, respectively, correspond to the simplicity and the complexity of a network in terms of the number of learnable parameters (degrees of freedom) and the number of hidden layers. This technique uses features extracted from a pretrained CNN, trained on a completely different dataset. Genetic algorithm solves for the optimal hyperparameters of the pretrained CNN. It is observed that these features serve as important and robust parameters for the training of the autoencoder, as a final average image classification accuracy improvement of about 17.45% is observed with the inclusion of these features. We use a pretrained CNN on MNIST dataset and classify images of several other benchmark datasets. We utilize different classifiers for image classification based on features extracted from the autoencoder and repeat each of the experiments a number of times with different random initialization of the classifier and the weight matrix of the autoencoder. We also perform experiments by pretraining the CNN with different datasets. Our results show a notable image classification accuracy and a significant reduction of training time with respect to a complex CNN.

read more

References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Related Papers (5)