scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Design of a Water Environment Monitoring System Based on Wireless Sensor Networks

19 Aug 2009-Sensors (Molecular Diversity Preservation International (MDPI))-Vol. 9, Iss: 8, pp 6411-6434
TL;DR: The proposed water environmental monitoring system based on a wireless sensor network has successfully accomplished the online auto-monitoring of the water temperature and pH value environment of an artificial lake and promises broad applicability prospects.
Abstract: A water environmental monitoring system based on a wireless sensor network is proposed. It consists of three parts: data monitoring nodes, data base station and remote monitoring center. This system is suitable for the complex and large-scale water environment monitoring, such as for reservoirs, lakes, rivers, swamps, and shallow or deep groundwaters. This paper is devoted to the explanation and illustration for our new water environment monitoring system design. The system had successfully accomplished the online auto-monitoring of the water temperature and pH value environment of an artificial lake. The system's measurement capacity ranges from 0 to 80 °C for water temperature, with an accuracy of ±0.5 °C; from 0 to 14 on pH value, with an accuracy of ±0.05 pH units. Sensors applicable to different water quality scenarios should be installed at the nodes to meet the monitoring demands for a variety of water environments and to obtain different parameters. The monitoring system thus promises broad applicability prospects.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A top-down survey of the trade-offs between application requirements and lifetime extension that arise when designing wireless sensor networks is presented and a new classification of energy-conservation schemes found in the recent literature is presented.
Abstract: The design of sustainable wireless sensor networks (WSNs) is a very challenging issue. On the one hand, energy-constrained sensors are expected to run autonomously for long periods. However, it may be cost-prohibitive to replace exhausted batteries or even impossible in hostile environments. On the other hand, unlike other networks, WSNs are designed for specific applications which range from small-size healthcare surveillance systems to large-scale environmental monitoring. Thus, any WSN deployment has to satisfy a set of requirements that differs from one application to another. In this context, a host of research work has been conducted in order to propose a wide range of solutions to the energy-saving problem. This research covers several areas going from physical layer optimization to network layer solutions. Therefore, it is not easy for the WSN designer to select the efficient solutions that should be considered in the design of application-specific WSN architecture. We present a top-down survey of the trade-offs between application requirements and lifetime extension that arise when designing wireless sensor networks. We first identify the main categories of applications and their specific requirements. Then we present a new classification of energy-conservation schemes found in the recent literature, followed by a systematic discussion as to how these schemes conflict with the specific requirements. Finally, we survey the techniques applied in WSNs to achieve trade-off between multiple requirements, such as multi-objective optimisation.

785 citations


Cites background from "Design of a Water Environment Monit..."

  • ...The use of WSNs for diverse environmental monitoring applications has been studied for coastline erosion [38], air quality monitoring [39], safe drinking water and contamination control [40]....

    [...]

Journal ArticleDOI
11 Sep 2014-Sensors
TL;DR: A comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks using WSNs and some related projects, systems, techniques, approaches and algorithms is provided.
Abstract: With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

310 citations


Cites background from "Design of a Water Environment Monit..."

  • ...During the last decade, WSNs have been widely utilized in a variety of application fields related to water monitoring [3–5], forest monitoring [6,7], industrial monitoring [8,9], agriculture monitoring [10,11], battlefield surveillance [12,13], intelligent transportation [14,15], smart homes [16,17], animal behavior monitoring [18,19], and disaster prevention [20,21]....

    [...]

Journal ArticleDOI
TL;DR: A power efficient, simpler solution for in-pipe water quality monitoring based on Internet of Things technology is presented, which provides an alert to a remote user, when there is a deviation of water quality parameters from the pre-defined set of standard values.
Abstract: Smart solutions for water quality monitoring are gaining importance with advancement in communication technology. This paper presents a detailed overview of recent works carried out in the field of smart water quality monitoring. Also, a power efficient, simpler solution for in-pipe water quality monitoring based on Internet of Things technology is presented. The model developed is used for testing water samples and the data uploaded over the Internet are analyzed. The system also provides an alert to a remote user, when there is a deviation of water quality parameters from the pre-defined set of standard values.

197 citations


Cites background from "Design of a Water Environment Monit..."

  • ...Extensive data analysis and information processing has been presented in (Theofanis et al., 2014; Peng et al., 2009; Xiuna et al., 2010; Francesco et al., 2015; Azedine et al., 2000)....

    [...]

  • ...Such systems (Peng et al., 2009; Xin et al., 2011; Liang, 2014; Wei et al., 2012) require additional SIM card for the GPRS module connected with the controller....

    [...]

  • ...Turbidity Vijayakumar and Ramya (2015), Tomoaki et al. (2016), Vinod and Sushama (2016), Theofanis et al....

    [...]

  • ...Such applications normally monitor parameters such as chlorophyll (Francesco et al., 2015), dissolved oxygen concentration (Christie et al., 2014; Anthony et al., 2014) and temperature (Peng et al., 2009; Francesco et al., 2015; Christie et al., 2014)....

    [...]

Journal ArticleDOI
TL;DR: This paper describes work that has been done on design and development of a water quality monitoring system, with the objective of notifying the user of the real-time water quality parameters.
Abstract: This paper describes work that has been done on design and development of a water quality monitoring system, with the objective of notifying the user of the real-time water quality parameters. The system is able to measure the physiochemical parameters of water quality, such as flow, temperature, pH, conductivity, and the oxidation reduction potential. These physiochemical parameters are used to detect water contaminants. The sensors, which are designed from first principles and implemented with signal conditioning circuits, are connected to a microcontroller-based measuring node, which processes and analyzes the data. In this design, ZigBee receiver and transmitter modules are used for communication between the measuring and notification nodes. The notification node presents the reading of the sensors and outputs an audio alert when water quality parameters reach unsafe levels. Various qualification tests are run to validate each aspect of the monitoring system. The sensors are shown to work within their intended accuracy ranges. The measurement node is able to transmit data by ZigBee to the notification node for audio and visual display. The results demonstrate that the system is capable of reading physiochemical parameters, and can successfully process, transmit, and display the readings.

195 citations


Cites background from "Design of a Water Environment Monit..."

  • ...Thewatermonitoring system implemented in [15] analyses and processes water quality parameters (pH, conductivity, dissolved oxygen and temperature), and also sounds an alarm when there is a water contamination, or change in water quality....

    [...]

01 Jan 2017
TL;DR: A concept of many IoT applications and future possibilities for new related technologies in addition to the challenges that facing the implementation of the IoT are reviewed.
Abstract: Nowadays Internet of Things (IoT) gained a great attention from researchers, since it becomes an important technology that promises a smart human being life, by allowing a communications between objects, machines and every things together with peoples. IoT represents a system which consists a things in the real world, and sensors attached to or combined to these things, connected to the Internet via wired and wireless network structure. The IoT sensors can use various types of connections such as RFID, Wi-Fi, Bluetooth, and ZigBee, in addition to allowing wide area connectivity using many technologies such as GSM, GPRS, 3G, and LTE. IoT-enabled things will share information about the condition of things and the surrounding environment with people, software systems and other machines. by the technology of the IoT, the world will becomes smart in every aspects, since the IoT will provides a means of smart cities, smart healthcare, smart homes and building, in addition to many important applications such as smart energy, grid, transportation, waste management and monitoring . In this paper we review a concept of many IoT applications and future possibilities for new related technologies in addition to the challenges that facing the implementation of the IoT.

175 citations

References
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.
Abstract: This paper describes the concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are also discussed.

17,936 citations


"Design of a Water Environment Monit..." refers background in this paper

  • ...A WSN (wireless sensor network) is an ad-hoc network system composed of a great number of tiny low cost and low power consumption sensing nodes which are capable of sensing, calculating and communicating data [2]....

    [...]

Proceedings ArticleDOI
26 Sep 2004
TL;DR: A new metric for routing in multi-radio, multi-hop wireless networks with stationary nodes called Weighted Cumulative ETT (WCETT) significantly outperforms previously-proposed routing metrics by making judicious use of the second radio.
Abstract: We present a new metric for routing in multi-radio, multi-hop wireless networks. We focus on wireless networks with stationary nodes, such as community wireless networks.The goal of the metric is to choose a high-throughput path between a source and a destination. Our metric assigns weights to individual links based on the Expected Transmission Time (ETT) of a packet over the link. The ETT is a function of the loss rate and the bandwidth of the link. The individual link weights are combined into a path metric called Weighted Cumulative ETT (WCETT) that explicitly accounts for the interference among links that use the same channel. The WCETT metric is incorporated into a routing protocol that we call Multi-Radio Link-Quality Source Routing.We studied the performance of our metric by implementing it in a wireless testbed consisting of 23 nodes, each equipped with two 802.11 wireless cards. We find that in a multi-radio environment, our metric significantly outperforms previously-proposed routing metrics by making judicious use of the second radio.

2,633 citations


"Design of a Water Environment Monit..." refers methods in this paper

  • ...In this monitoring system, we use ad-hoc multi-hop routing to support the the ZigBee wireless communication [17,18]....

    [...]

Journal ArticleDOI
09 Dec 2002
TL;DR: Reference Broadcast Synchronization (RBS) as discussed by the authors is a scheme in which nodes send reference beacons to their neighbors using physical-layer broadcasts, and receivers use their arrival time as a point of reference for comparing their clocks.
Abstract: Recent advances in miniaturization and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low-power sensors and actuators. Time synchronization is critical in sensor networks for diverse purposes including sensor data fusion, coordinated actuation, and power-efficient duty cycling. Though the clock accuracy and precision requirements are often stricter than in traditional distributed systems, strict energy constraints limit the resources available to meet these goals.We present Reference-Broadcast Synchronization, a scheme in which nodes send reference beacons to their neighbors using physical-layer broadcasts. A reference broadcast does not contain an explicit timestamp; instead, receivers use its arrival time as a point of reference for comparing their clocks. In this paper, we use measurements from two wireless implementations to show that removing the sender's nondeterminism from the critical path in this way produces high-precision clock agreement (1.85 ± 1.28μsec, using off-the-shelf 802.11 wireless Ethernet), while using minimal energy. We also describe a novel algorithm that uses this same broadcast property to federate clocks across broadcast domains with a slow decay in precision (3.68 ± 2.57μsec after 4 hops). RBS can be used without external references, forming a precise relative timescale, or can maintain microsecond-level synchronization to an external timescale such as UTC. We show a significant improvement over the Network Time Protocol (NTP) under similar conditions.

2,537 citations

Journal ArticleDOI
TL;DR: The NTP synchronization system is described, along with performance data which show that timekeeping accuracy throughout most portions of the Internet can be ordinarily maintained to within a few milliseconds, even in cases of failure or disruption of clocks, time servers, or networks.
Abstract: The network time protocol (NTP), which is designed to distribute time information in a large, diverse system, is described. It uses a symmetric architecture in which a distributed subnet of time servers operating in a self-organizing, hierarchical configuration synchronizes local clocks within the subnet and to national time standards via wire, radio, or calibrated atomic clock. The servers can also redistribute time information within a network via local routing algorithms and time daemons. The NTP synchronization system, which has been in regular operation in the Internet for the last several years, is described, along with performance data which show that timekeeping accuracy throughout most portions of the Internet can be ordinarily maintained to within a few milliseconds, even in cases of failure or disruption of clocks, time servers, or networks. >

2,114 citations


"Design of a Water Environment Monit..." refers methods in this paper

  • ...This method of time synchronization is similar to NTP [15,16]....

    [...]

Proceedings ArticleDOI
05 Nov 2003
TL;DR: This work study and evaluate link estimator, neighborhood table management, and reliable routing protocol techniques, and narrow the design space through evaluations on large-scale, high-level simulations to 50-node, in-depth empirical experiments.
Abstract: The dynamic and lossy nature of wireless communication poses major challenges to reliable, self-organizing multihop networks. These non-ideal characteristics are more problematic with the primitive, low-power radio transceivers found in sensor networks, and raise new issues that routing protocols must address. Link connectivity statistics should be captured dynamically through an efficient yet adaptive link estimator and routing decisions should exploit such connectivity statistics to achieve reliability. Link status and routing information must be maintained in a neighborhood table with constant space regardless of cell density. We study and evaluate link estimator, neighborhood table management, and reliable routing protocol techniques. We focus on a many-to-one, periodic data collection workload. We narrow the design space through evaluations on large-scale, high-level simulations to 50-node, in-depth empirical experiments. The most effective solution uses a simple time averaged EWMA estimator, frequency based table management, and cost-based routing.

1,735 citations