scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Design of an optomagnonic crystal: Towards optimal magnon-photon mode matching at the microscale

TL;DR: In this paper, an optomagnonic crystal consisting of a Faraday active magnetic dielectric was proposed, which was periodically patterned at the microscale and supported both photon and magnon modes.
Abstract: The authors propose an optomagnonic crystal consisting of a Faraday-active magnetic dielectric which is periodically patterned at the microscale and supports both photon and magnon modes.
Citations
More filters
Journal ArticleDOI
TL;DR: Magnonics addresses the physical properties of spin waves and utilizes them for data processing as mentioned in this paper , and many proof-of-concept prototypes have already been realized in laboratories, such as the one presented in this article.
Abstract: Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors, which covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with the Boolean digital data, unconventional approaches, such as neuromorphic computing, and the progress toward magnon-based quantum computing. This article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of current challenges and the outlook of further development for each research direction.

87 citations

Journal ArticleDOI
TL;DR: Cavity magnonics as mentioned in this paper deals with the interaction of magnons and magnetic materials and confined electromagnetic fields, and is a young field that is gearing up for integration in future quantum technologies.

63 citations

Journal ArticleDOI
TL;DR: In this paper , a short review of the recent theoretical and experimental progress in the field of optomagnetic coupling and optical manipulation based on cavity-optomagnonics is presented.
Abstract: Abstract Recently, the photon—magnon coherent interaction based on the collective spins excitation in ferromagnetic materials has been achieved experimentally. Under the prospect, the magnons are proposed to store and process quantum information. Meanwhile, cavity-optomagnonics which describes the interaction between photons and magnons has been developing rapidly as an interesting topic of the cavity quantum electrodynamics. Here in this short review, we mainly introduce the recent theoretical and experimental progress in the field of optomagnetic coupling and optical manipulation based on cavity-optomagnonics. According to the frequency range of the electromagnetic field, cavity optomagnonics can be divided into microwave cavity optomagnonics and optical cavity optomagnonics, due to the different dynamics of the photon—magnon interaction. As the interaction between the electromagnetic field and the magnetic materials is enhanced in the cavity-optomagnonic system, it provides great significance to explore the nonlinear characteristics and quantum properties for different magnetic systems. More importantly, the electromagnetic response of optomagnonics covers the frequency range from gigahertz to terahertz which provides a broad frequency platform for the multi-mode controlling in quantum systems.

18 citations

Journal ArticleDOI
TL;DR: In this article, the polarization dependence of magnon-photon scattering in an optical microcavity is reported and a copolarized scattering due to second-order Cotton-Mouton effect is also observed.
Abstract: The polarization dependence of magnon-photon scattering in an optical microcavity is reported. Because of the short cavity length, the longitudinal mode-matching conditions found in previously explored, large path-length whispering gallery resonators are absent. Nonetheless, for cross-polarized scattering a strong and broadband suppression of one sideband is observed. This arises due to an interference between the Faraday and second-order Cotton-Mouton effects. To fully account for the suppression of the cross-polarized scattering, it is necessary to consider the squeezing of magnon modes intrinsic to thin-film geometry. A copolarized scattering due to Cotton-Mouton effect is also observed. In addition, the magnon modes involved are identified as Damon-Eshbach surface modes, whose nonreciprocal propagation could be exploited in device applications. This Letter experimentally demonstrates the important role of second-order Cotton-Mouton effect for optomagnonic devices.

9 citations

Journal ArticleDOI
TL;DR: In this article , a detailed derivation of the magnon-photon coupling Hamiltonian in dispersive media both for degenerate and non-degenerate optical modes is presented.
Abstract: Achieving strong coupling between light and matter excitations in hybrid systems is a benchmark for the implementation of quantum technologies. We recently proposed [arXiv:2110.02984] that strong single-particle coupling between magnons and light can be realized in a magnetized epsilon-near-zero (ENZ) medium, in which magneto-optical effects are enhanced. Here we present a detailed derivation of the magnon-photon coupling Hamiltonian in dispersive media both for degenerate and non-degenerate optical modes, and show the enhancement of the coupling near the ENZ frequency. Moreover, we show that the coupling of magnons to plane-wave non-degenerate Voigt modes vanishes at specific frequencies due to polarization selection rules tuned by dispersion. Finally, we present specific results using a Lorentz dispersion model. Our results pave the way for the design of dispersive optomagnonic systems, providing a general theoretical framework for describing engineering ENZ-based optomagnonic systems.

7 citations

References
More filters
Journal ArticleDOI

40,330 citations


Additional excerpts

  • ...008 (compare to γ ≈ 10−5 − 10−4 for YIG) [119, 120]....

    [...]

Journal ArticleDOI
TL;DR: If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.
Abstract: It has been recognized for some time that the spontaneous emission by atoms is not necessarily a fixed and immutable property of the coupling between matter and space, but that it can be controlled by modification of the properties of the radiation field. This is equally true in the solid state, where spontaneous emission plays a fundamental role in limiting the performance of semiconductor lasers, heterojunction bipolar transistors, and solar cells. If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.

12,787 citations

Journal ArticleDOI
Sajeev John1
TL;DR: A new mechanism for strong Anderson localization of photons in carefully prepared disordered dielectric superlattices with an everywhere real positive dielectrics constant is described.
Abstract: A new mechanism for strong Anderson localization of photons in carefully prepared disordered dielectric superlattices with an everywhere real positive dielectric constant is described. In three dimensions, two photon mobility edges separate high- and low-frequency extended states from an intermediate-frequency pseudogap of localized states arising from remnant geometric Bragg resonances. Experimentally observable consequences are discussed.

9,067 citations

Book
03 Jul 1995
TL;DR: In this paper, the authors developed the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory, and investigated the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions.
Abstract: Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on device design using temporal coupled-mode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers.Extensively revised and expanded Features improved graphics throughout Includes new chapters on photonic-crystal fibers and combined index-and band-gap-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection, anomalous refraction and diffraction, computational photonics, and much more.

8,188 citations


"Design of an optomagnonic crystal: ..." refers background or methods in this paper

  • ...We note that structures made of a high-ε material with air holes favour a band gap for transverse electric modes [40], which is advantageous for our purposes....

    [...]

  • ...For simplicity we simulate the YIG crystal in a 2D model (see [40, 105])....

    [...]

  • ...Similar symmetry considerations [40] show that a TE-like mode must satisfy...

    [...]

  • ...We note that due to the (discrete) periodicity, the crystal only possesses an incomplete band gap and the localized mode can scatter to air modes [40]....

    [...]

  • ...In this case the mid-gap frequency is given by [40]...

    [...]

Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations