scispace - formally typeset
Open AccessReportDOI

Design of megawatt power level heat pipe reactors

Reads0
Chats0
TLDR
In this article, the authors developed a scalable conceptual design for a compact fast-spectrum nuclear reactor and identified scaling issues for compact heat pipe cooled reactors in general, and developed two detailed concepts, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials with a power level of about 5 MWe.
Abstract
An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

read more

Content maybe subject to copyright    Report

LA-UR-15-28840
Approved for public release; distribution is unlimited.
Title: DESIGN OF MEGAWATT POWER LEVEL HEAT PIPE REACTORS
Author(s): Mcclure, Patrick Ray
Poston, David Irvin
Dasari, Venkateswara Rao
Reid, Robert Stowers
Intended for: Report
Issued: 2015-11-12

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

!
!
!
!
!
!
!
!
!
DESIGN OF MEGAWATT POWER LEVEL HEAT PIPE REACTORS
Patrick McClure, David Poston, D.V. Rao and Robert Reid
Los Alamos National Laboratory
November 2015

ABSTRACT'................................................................................................................................................'3!
INTRO D U C TIO N '......................................................................................................................................'3!
POTENTIAL'ADVANTAGES'..................................................................................................................'7!
SIZE!..............................................................................................................................................................................!8!
ORIENTATION!............................................................................................................................................................!9!
SAFETY!........................................................................................................................................................................!9!
SELF!REGULATION!(LOAD!FOLLOWING)!...........................................................................................................!10!
SOLID!STATE!............................................................................................................................................................!10!
HEAT!TRANSFER!SURFACE!AREA!MOVED!OUTSIDE!CORE!.............................................................................!10!
MORE!CHOICE!OF!FLUIDS!AND!CONFIGURATIONS!...........................................................................................!11!
HIGH!TEMPERATURES!...........................................................................................................................................!11!
SUMMARY!OF!ADVANTAGES!................................................................................................................................. !11!
ISSUES'O N 'SC A L IN G'............................................................................................................................'12!
LIMITAT ION S !ON!SCALING!....................................................................................................................................!12!
LIMITS!ON !NUMBER!OF!HEAT!PIPES!..................................................................................................................!12!
LIMITS!BASED!ON!ACCIDENT!CONDITIONS!.......................................................................................................!12!
LIMITS!ON !HEAT-PIPE !PERFORMANCE!..............................................................................................................!13!
LIMITS!ON !THERMAL!AND!MECHANICAL!PERFORMANCE!..............................................................................!14!
OTHER!MATERIAL!LIMITATIONS!.........................................................................................................................!15!
OVERCOMING'LIMITS'ON'SCALING'...............................................................................................'16!
CORE!SEGMENTATION!...........................................................................................................................................!16!
HEAT!PIPE !PERFORMANCE!!THE!USE!OF!A!DOUBLE-ENDED!HEAT!PIPE!.................................................!17!
OVERCOMING!THERMAL/MECHANICAL/NEUTRONIC!ISSUES!FOR!NORMAL!AND!ACCIDENT!CONDITIONS
!...................................................................................................................................................................................!18!
DETAILED'ANALYSIS'OF'BLOCK'DESIGNS'(SS_UO2'AND'MOLY_UN)'..................................'19!
QUALITATIVE'TRADE'OFFS'OF'ALTERNATIVE'DESIGNS'.......................................................'28!
RESULTS!OF!ALTERNATIVES!STUDY!...................................................................................................................!35!
FUEL!MATERIAL!.....................................................................................................................................................!35!
BLOCK!MATERIAL!..................................................................................................................................................!35!
RANKING!OF!ALTERNATIVES!................................................................................................................................!36!
OVERALL'LESSONS'LEARNED'AND'RECOMMENDATION'GOING'FORWARD'...................'36!
POSSIBLE!REACTOR!CONCEPT!FOR!REMOTE!LOCATIONS!...............................................................................!36!
APPENDIX'A'..........................................................................................................................................'39!
METHODOLOGY!FOR!ANALYSIS!............................................................................................................................!39!
!

DESIGN OF MEGAWATT POWER LEVEL HEAT PIPE REACTORS
Patrick McClure, David Poston, D.V. Rao and Robert Reid
Los Alamos National Laboratory
!
Abstract(
An#important#niche#for#nuclear#energy#is#the#need#for#power#at#remote#locations#
removed#from#a#reliable#electrical#grid.##Nuclear#energy#has#potential#applications#at#
strategic#defense#locations,#theaters#of#battle,#remote#communities,#and#emergency#
locations.##With#proper#safeguards,#a#1#to#10-MWe#(megawatt#electric)#mobile#reactor#
system#could#provide#robust,#self-contained,#and#long-term#power#in#any#environment.##
Heat#pipe-cooled#fast-spectrum#nuclear#reactors#have#been#identified#as#a#candidate#
for#these#applications.#Heat#pipe#reactors,#using#alkali#metal#heat#pipes,#are#perfectly#
suited#for#mobile#applications#because#their#nature#is#inherently#simpler,#smaller,#and#
more#reliable#than#“traditional”#reactors.##
The#goal#of#this#project#was#to#develop#a#scalable#conceptual#design#for#a#compact#
reactor#and#to#identify#scaling#issues#for#compact#heat#pipe#cooled#reactors#in#general.####
Toward#this#goal#two#detailed#concepts#were#developed,#the#first#concept#with#more#
conventional#materials#and#a#power#of#about#2#MWe#and#a#the#second#concept#with#
less#conventional#materials#and#a#power#level#of#about#5#MWe.##A#series#of#more#
qualitative#advanced#designs#were#developed#(with#less#detail)#that#show#power#levels#
can#be#pushed#to#approximately#30#MWe.#
Introduc tio n(
Reactors!come!in!a!range!of!sizes.!!The!size!fits!a!variety!of!applications!as!shown!in!
Figure!1.!!Los!Alamos!National!Laboratory!(LANL)!has!traditionally!designed!
reactors!for!applications!in!the!1!to!200!kilowatt!electric!(kWe)!range!as!shown!in!
first!two!columns!in!Figure!1.!!Most!of!LANL’s!designs!have!been!for!space!
applications!for!the!National!Aeronautics!and!Space!Administration!(NASA.)!!Almost!
all!of!these!reactor!designs!are!based!on!a!small!highly!reflected!fast!reactor!concept!
that!use!heat!pipes!as!the!means!of!heat!removal!from!the!reactor!core.!!This!is!an!
ideal!technology!for!space!where!reliability!and!simplicity!are!key!requirements.!!!
LANL!performed!a!study!to!examine!the!issues!of!scaling!heat!pipe!reactor!
technology!to!the!low!megawatt!electric!(MWe)!range!(shown!in!third!column!of!
Figure!1.)!!The!low!MWe!range!is!an!area!that!was!examined!in!the!1950s!through!
1970s!by!the!U.S.!Army!for!power!at!remote!locations!such!as!the!Arctic,!Antarctica!
and!the!Panama!Canal.!!Power!at!remote!locations!removed!from!a!reliable!electrical!
grid!is!a!potential!future!niche!for!nuclear!energy.!!!Remote!locations!include!
strategic!defense!locations!(such!pacific!island!bases),!theaters!of!battle,!remote!

Citations
More filters
Journal ArticleDOI

The technology of micro heat pipe cooled reactor: A review

TL;DR: In this paper, the development and technologies of micro heat pipe cooled reactor are overviewed, and difficulties and challenges need to be overcome in the future, including heat pipe cascading failure, fuel enrichment, structure integrity, machining, monolithic thermal stress, inspection and qualification, etc.
Journal ArticleDOI

Emerging small modular nuclear power reactors: A critical review

TL;DR: The promise of SMRs as means to reduce greenhouse gas emissions and their ability to supply reliable and base-load power, the licensing of such reactors by national regulators will provide a boost to their acceptability and adaptability as a player in combating climate change.
Journal ArticleDOI

Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system

TL;DR: In this paper, a new conceptual design of a megawatt power level heat pipe cooled space Reactor (HPCR) power system adopted the integrated heatpipe-fuel modules is developed.
Journal ArticleDOI

Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor

TL;DR: In this paper, a three-stage frozen startup model is developed to describe the thermal behavior of heat pipe during the startup process, and the continuum flow in the vapor space is modeled as a one-dimensional compressible flow.
Journal ArticleDOI

Coupled Multiphysics Simulations of Heat Pipe Microreactors Using DireWolf

TL;DR: DireWolf as mentioned in this paper is a multiphysics software driver application designed to simulate heat pipe-cooled nuclear microreactors, which can be used to simulate nuclear power plants.
Frequently Asked Questions (1)
Q1. What contributions have the authors mentioned in the paper "Design of megawatt power level heat pipe reactors" ?

McClure et al. this paper presented a study to examine the issues of scaling heat pipe reactor technology to the low megawatt electric ( MWe ) range ( shown in third column of Figure 1 ).