scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Designing a Biosensor Using a Photonic Quasi-Crystal Fiber

15 Apr 2016-IEEE Sensors Journal (IEEE)-Vol. 16, Iss: 8, pp 2425-2430
TL;DR: In this paper, a photonic quasi-crystal fiber-based refractive index biosensor (PQF-RIBS) was proposed, which works based on the surface plasmon polariton.
Abstract: Using finite-element method, we propose a photonic quasi-crystal fiber-based refractive index biosensor (PQF-RIBS), which works based on the surface plasmon polariton. We determine the loss spectra for two different variations of the refractive index of analyte, $n_{a}$ . From the detailed numerical analysis, we find that the PQF-RIBS exhibits a maximum refractive index sensitivity of 6000 nm/RIU and a resolution of $1.6\,\, \times \,\,10^{-6}$ RIU when $n_{a}$ is increased from 1.45 to 1.46. Besides, this sensor does exhibit the negative refractive index sensitivity of −4000 nm/RIU and a resolution of $2.5\,\, \times \,\,10^{-6}$ RIU for a sensing range from 1.52 to 1.53. Furthermore, we carry out selective filling of liquid in the selective holes of the proposed biosensor for a sensing wavelength range from 900 to 1200 nm. Finally, we also study the influence of the structural parameters, namely, diameter of the core and diameter of the air holes in the cladding over the loss spectra of a fundamental mode for a particular $n_{a}$ of 1.47.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a surface plasmon resonance (SPR) fiber biosensor is theoretically proposed to detect the surrounding refractive index based on a Stampfli-type photonic quasi-crystal fiber with one air hole coated gold thin film.
Abstract: In this paper, a novel, to the best of our knowledge, surface plasmon resonance (SPR) fiber biosensor is theoretically proposed to detect the surrounding refractive index based on a Stampfli-type photonic quasi-crystal fiber with one air hole coated gold thin film. Surface plasmon polaritons (SPPs) at the metal/dielectric interface are excited by the orbital angular momentum (OAM) mode (other than Gaussian mode) that propagates very robustly along the fiber with helical phase, facilitating the energy transformation of OAM mode to SPP mode and then realization of the typical resonant loss peak. The proposed OAM-SPR fiber sensor exhibits a refractive index sensitivity of 4466.5 nm/RIU and a resolution of 2.3×10−5 RIU in a broad refractive index range from 1.36 to 1.435. Numeric results show that both structure parameters of the fiber and thickness of the gold layer influence sensing performance as the phase matching condition varies. This work offers theoretical guidance for the design of an OAM-SPR fiber biosensor and has great potential applications in sensing bio-molecular and bio-chemical liquids.

13 citations

Journal ArticleDOI
TL;DR: A highly sensitive surface plasmon resonance (SPR) sensor comprising an eccentric core photonic quasi-crystal fiber (PQF) coated with indium tin oxide is designed and numerically analyzed, which provides higher refractive index sensitivity in the near-infrared region.
Abstract: A highly sensitive surface plasmon resonance (SPR) sensor comprising an eccentric core photonic quasi-crystal fiber (PQF) coated with indium tin oxide is designed and numerically analyzed. The novel, to the best of our knowledge, structure with an eccentric core layout and local coating not only strengthens coupling between the core mode and surface plasmon polariton mode but also provides higher refractive index sensitivity in the near-infrared region. Analysis based on the finite element method to assess the performance of the sensor and optimize the structural parameters reveals that the maximum wavelength sensitivity and resolution are 96667 nm/RIU and 1.034×10-6RIU in the sensing range between 1.380 and 1.413, respectively. Meanwhile, the average sensitivity is enhanced to 25458 nm/RIU. The sensor is expected to have broad applications in environmental monitoring, biochemical sensing, food safety testing, and related applications due to the ultrahigh sensitivity and resolution.

12 citations

Journal ArticleDOI
TL;DR: In this paper , a surface plasmon resonance biosensor was designed for the on-chip and real-time detection of coronaviruses using a photonic quasi-crystal fiber.
Abstract: Since the coronavirus pandemic began, research groups worldwide developed diagnostic tests. One of the promising platforms for testing is an optical and plasmonic biosensor. Localized surface plasmon resonances owing to their highly concentrated field intensity provide highly sensitive devices. A beneficial approach to excite localized surface plasmon modes for field-based applications is using photonic crystal fibers while photonic quasi-crystals demonstrate a higher order of symmetry, the more isotropic Brillouin zone, and the easier achievement of photonic bandgap as compared with conventional photonic crystals. In this work, by exploiting a photonic quasi-crystal fiber, we are designing a surface plasmon resonance biosensor for the on-chip and real-time detection of coronaviruses. In our miniaturized design, a thin gold layer is employed on the outer layer of an air hole of a photonic quasi-crystal fiber with a 12-fold symmetry where the leakage of the fiber core mode can excite the surface plasmon resonance mode on the gold. According to three-dimensional finite-difference time-domain simulations, the proposed biosensor shows the sensitivity of 1172 nm/RIU in the detection of coronaviruses within the saliva. Moreover, the smallest detection limit obtained in the simulation is about 12 nm. These promising results altogether indicate that this reconfigurable and lab-on-a-chip platform can potentially be used in the detection of all kinds of coronaviruses.

10 citations

Journal ArticleDOI
01 May 2019-Optik
TL;DR: A photonic quasi-crystal fiber (PQF) with high birefringence based on ZrF4-BaF2-LaF3-Al F3-NaF (ZBLAN) is described in this paper.

9 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a Microstructured Optical Fiber-based Surface Plasmon Resonance sensor with optimized microfluidics, where plasmons on the inner surface of large metallized channels containing analyte can be excited by a single mode microstructured fiber.
Abstract: The concept of a Microstructured Optical Fiber-based Surface Plasmon Resonance sensor with optimized microfluidics is proposed. In such a sensor plasmons on the inner surface of large metallized channels containing analyte can be excited by a fundamental mode of a single mode microstructured fiber. Phase matching between plasmon and a core mode can be enforced by introducing air filled microstructure into the fiber core, thus allowing tuning of the modal refractive index and its matching with that of a plasmon. Integration of large size microfluidic channels for efficient analyte flow together with a single mode waveguide of designable effective refractive index is attractive for the development of integrated highly sensitive MOF-SPR sensors operating at any designable wavelength.

374 citations


"Designing a Biosensor Using a Photo..." refers background in this paper

  • ...In this line, PCFs with a regular hexagonal array of air holes running along the fiber length have opened a new avenue in the closedform optical fiber plasmonic sensing [2]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a water-core microstructure fiber design allows nearly ideal guidance for aqueous sensing applications, where the total internal reflection by a microstructured silica-air cladding provides robust confinement of light in a fluid-filled core, if the average cladding index is sufficiently below the index of water.
Abstract: A novel water-core microstructure fibre design allows nearly ideal guidance for aqueous sensing applications. The total internal reflection by a microstructured silica–air cladding provides robust confinement of light in a fluid-filled core, if the average cladding index is sufficiently below the index of water. Numerical results show dramatically improved loss and overlap of light with the sample, compared to evanescent-field fibres, indicating a direct improvement of sensor performance. A strategy for the improvement of evanescent-wave gas sensors is also discussed.

284 citations


"Designing a Biosensor Using a Photo..." refers background in this paper

  • ...An unstinted effort has been made for enhancing the performance of sensor by maximizing the confinement loss and overlap of light with the sample [17]....

    [...]

Journal ArticleDOI
19 May 2015-Sensors
TL;DR: A surface plasmon resonance (SPR) sensor based on photonic crystal fiber with selectively filled analyte channels with maximum amplitude sensitivity and maximum refractive index (RI) sensitivity is proposed, suitable for detecting various high RI chemicals, biochemical and organic chemical analytes.
Abstract: We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1) with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint.

239 citations

Journal ArticleDOI
TL;DR: A review of photonic crystal fiber sensors is presented; two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter.
Abstract: Photonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.

235 citations

Journal ArticleDOI
TL;DR: In this paper, the fabrication of triangular lattices of parallel gold and silver nanowires of high optical quality was reported, with diameters down to $500\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ and length to diameter ratios as high as 100 000.
Abstract: We report the fabrication of triangular lattices of parallel gold and silver nanowires of high optical quality, with diameters down to $500\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ and length-to-diameter ratios as high as 100 000. The nanowires are supported by a silica glass matrix and are disposed around a central solid glass core, i.e., a missing nanowire. These centimeter-long structures make it possible to trap light within an array of nanowires and characterize the plasmon resonances that form at specific optical frequencies. Such nanowire arrays have many potential applications, e.g., imaging on the subwavelength scale.

223 citations


"Designing a Biosensor Using a Photo..." refers methods in this paper

  • ...In the last few years, the microstructured PCFs with a regular hexagonal array of holes have facilitated a new method of optical fiber plasmonic sensing....

    [...]

  • ...In this line, PCFs with a regular hexagonal array of air holes running along the fiber length have opened a new avenue in the closedform optical fiber plasmonic sensing [2]....

    [...]

  • ...At this juncture, the label-free fiber based biosensors have been reported using long period gratings in PCFs [4]–[7], twin-core microstructured polymer optical fibers [8], [9], four-wave mixing [10] and modulational instability [5], [11]....

    [...]

  • ...It is well established that the properties of the PCFs could be enhanced by filling the air holes with appropriate liquids....

    [...]

  • ...For the first time, Schmidt et al have designed the SPR sensors by embedding the gold and silver nanowires onto PCFs [14]....

    [...]