scispace - formally typeset
Journal ArticleDOI: 10.1016/J.SAA.2020.119264

Designing an ESIPT-based fluorescent probe for imaging of hydrogen peroxide during the ferroptosis process.

Abstract: Hydrogen peroxide (H2O2), depending on its levels, plays a crucial role in either modulating various biological processes as a signal molecule, or mediating oxidative damage as a toxin. Therefore, monitoring intracellular H2O2 levels is pivotal for exploring its physiological and pathological roles. Using a modified 2-(2′-hydroxyphenyl) benzothiazole (HBT) as the fluorophore, and a pinacol phenylborate ester as the responsive group, herein we developed an excited-state intramolecular proton transfer (ESIPT)-based probe BTFMB. The probe exhibited turn-on fluorescence response, large Stokes shift (162 nm) and low detection limit (109 nM) toward H2O2, and was successfully applied for monitoring exogenous and endogenous production of H2O2, and identifying accumulation of H2O2 during the ferroptosis process.

... read more

Citations
  More

10 results found


Journal ArticleDOI: 10.1016/J.TALANTA.2021.122684
Mingguang Ren1, Dejun Dong, Qingyu Xu1, Jingfen Yin1  +2 moreInstitutions (1)
01 Nov 2021-Talanta
Abstract: Hydrogen peroxide (H2O2) plays a vital role in organism due to its strong oxidizability, especially in resisting the invasion of pathogens. Cancer cells have abnormal concentrations of hydrogen peroxide due to their disordered reproduction. In complex biological systems, however, conventional fluorescent probes based solely on their fluorescent response to abnormal H2O2 overexpression in cancer cells are not enough to distinguish cancer cells from other unhealthy or immune cells. Therefore, it is necessary to develop other methods to allow the probe to selectively enter the cancer cells and perform fluorescence imaging of the hydrogen peroxide in the cancer cells. Herein, we developed a biotin-guided, two-photon fluorescent probe (BT-HP) for sensitive detection of H2O2 in cancer cells. Through the study on the properties of the probe, it was found that the probe can selectively enter cancer cells. The depth penetration imaging of H2O2 in cancer cells and tumor tissues by two-photon microscope proves the potential of the probe BT-HP as a tumor targeting H2O2 biosensor. The probe was further applied to detect hydrogen peroxide in cancer cells during the ferroptosis process.

... read more

Topics: Cancer cell (55%), Hydrogen peroxide (52%)

2 Citations


Open accessJournal ArticleDOI: 10.3390/MOLECULES26113352
02 Jun 2021-Molecules
Abstract: Hydrogen peroxide (H2O2) plays an important role in the human body and monitoring its level is meaningful due to the relationship between its level and diseases. A fluorescent sensor (CMB) based on coumarin was designed and its ability for detecting hydrogen peroxide by fluorescence signals was also studied. The CMB showed an approximate 25-fold fluorescence enhancement after adding H2O2 due to the interaction between the CMB and H2O2 and had the potential for detecting physiological H2O2. It also showed good biocompatibility and permeability, allowing it to penetrate cell membranes and zebrafish tissues, thus it can perform fluorescence imaging of H2O2 in living cells and zebrafish. This probe is a promising tool for monitoring the level of H2O2 in related physiological and pathological research.

... read more

1 Citations


Journal ArticleDOI: 10.1016/J.SNB.2021.130831
Ge Chunpo1, Yang Yan1, Tan Pengfei1, Shi Hu2  +4 moreInstitutions (2)
Abstract: In this study, we report the construction of a turn-on fluorescent probe, TMN-H2O2 with near-infrared emission for H2O2 detection in living systems. A series of experiments demonstrated that TMN-H2O2 exhibits a high selectivity for H2O2. After reaction with H2O2, TMN-H2O2 exhibited a 14.3-fold increase in fluorescence intensity at 660 nm and a 180 nm large Stokes shift. Moreover, TMN-H2O2 exhibited excellent sensitivity (limit of detection: 76 nM) and a fast response time (~40 min). The successful in vitro and in vivo application of TMN-H2O2 therefore suggested that this probe is a reliable chemical tool for monitoring both endogenous and exogenous H2O2.

... read more

Topics: Fluorescence (52%), Detection limit (50%)

1 Citations


Journal ArticleDOI: 10.1002/CHEM.202103262
Abstract: The current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.

... read more

1 Citations


Open accessJournal ArticleDOI: 10.1021/ACS.JAFC.1C05247
Jian Wang1, Hui Xie1, Haoyang Li1, Rong Wang1  +4 moreInstitutions (2)
Abstract: Hydrogen sulfide (H2S) is one of the typical reactive sulfur species, which exhibits an important role in regulating both physiological and pathological processes. Recent studies indicate that H2S also serves as a key signaling molecule in a broad range of regulatory processes in plants. However, in situ imaging and detection of the levels of H2S in plant tissues remains a challenge. In this work, a NIR fluorescent probe (HBTP-H2S) was synthesized to achieve H2S imaging in living plant tissues. HBTP-H2S exhibited high sensitivity toward H2S with a large Stokes shift (250 nm). HBTP-H2S could be applied to HeLa cells to detect the fluctuation of endogenous H2S levels in response to physiological stimulations. Importantly, HBTP-H2S was utilized for direct H2S imaging of rice roots and revealed the upregulation of H2S signaling in response to aluminum ions and flooding stresses. Our work thus provides a new tool to investigate H2S-involved signal interaction and protective resistance of crops under environmental stresses.

... read more


References
  More

48 results found


Open accessJournal ArticleDOI: 10.1016/J.CELL.2012.03.042
25 May 2012-Cell
Abstract: Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration.

... read more

Topics: Programmed cell death (53%), SLC7A11 (52%), Cancer cell (50%) ... read more

3,349 Citations


Journal ArticleDOI: 10.1038/NRD1330
Abstract: Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxygen is vital for life but is also potentially dangerous, and a complex system of checks and balances exists for utilizing this essential element. Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. The systems in place to cope with the biochemistry of oxygen are complex, and many questions about the mechanisms of oxygen regulation remain unanswered. However, this same complexity provides a number of therapeutic targets, and different strategies, including novel metal-protein attenuating compounds, aimed at a variety of targets have shown promise in clinical studies.

... read more

Topics: Oxidative stress (55%)

3,028 Citations


Journal ArticleDOI: 10.1152/PHYSREV.1994.74.1.139
Buyung Pal Yu1Institutions (1)
Abstract: Pages 139–162: Yu. “Cellular Defenses Against Damage From Reactive Oxygen Species.” Page 150: The section 2. Ceruloplasmin should appear as follows: [See PDF]

... read more

Topics: Reactive oxygen species (50%)

2,421 Citations


Journal ArticleDOI: 10.1038/NATURE01485
27 Mar 2003-Nature
Abstract: Cell expansion is a central process in plant morphogenesis, and the elongation of roots and root hairs is essential for uptake of minerals and water from the soil. Ca2+ influx from the extracellular store is required for (and sets the rates of) cell elongation in roots. Arabidopsis thaliana rhd2 mutants are defective in Ca2+ uptake and consequently cell expansion is compromised--rhd2 mutants have short root hairs and stunted roots. To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS). We show that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants. Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system. This indicates that NADPH oxidases control development by making ROS that regulate plant cell expansion through the activation of Ca2+ channels.

... read more

Topics: NADPH oxidase (59%), Root hair elongation (58%), Root hair (56%) ... read more

1,968 Citations


Journal ArticleDOI: 10.1038/NCHEMBIO.85
Christine C. Winterbourn1Institutions (1)
Abstract: There is a vast literature on the generation and effects of reactive oxygen species in biological systems, both in relation to damage they cause and their involvement in cell regulatory and signaling pathways. The biological chemistry of different oxidants is becoming well understood, but it is often unclear how this translates into cellular mechanisms where redox changes have been demonstrated. This review addresses this gap. It examines how target selectivity and antioxidant effectiveness vary for different oxidants. Kinetic considerations of reactivity are used to assess likely targets in cells and how reactions might be influenced by restricted diffusion and compartmentalization. It also highlights areas where greater understanding is required on the fate of oxidants generated by cellular NADPH oxidases and on the identification of oxidant sensors in cell signaling.

... read more

1,725 Citations