scispace - formally typeset
Journal ArticleDOI

Detecting and Mitigating Adversarial Perturbations for Robust Face Recognition

Reads0
Chats0
TLDR
This paper attempts to unravel three aspects related to the robustness of DNNs for face recognition in terms of vulnerabilities to attacks, detecting the singularities by characterizing abnormal filter response behavior in the hidden layers of deep networks; and making corrections to the processing pipeline to alleviate the problem.
Abstract
Deep neural network (DNN) architecture based models have high expressive power and learning capacity. However, they are essentially a black box method since it is not easy to mathematically formulate the functions that are learned within its many layers of representation. Realizing this, many researchers have started to design methods to exploit the drawbacks of deep learning based algorithms questioning their robustness and exposing their singularities. In this paper, we attempt to unravel three aspects related to the robustness of DNNs for face recognition: (i) assessing the impact of deep architectures for face recognition in terms of vulnerabilities to attacks, (ii) detecting the singularities by characterizing abnormal filter response behavior in the hidden layers of deep networks; and (iii) making corrections to the processing pipeline to alleviate the problem. Our experimental evaluation using multiple open-source DNN-based face recognition networks, and three publicly available face databases demonstrates that the performance of deep learning based face recognition algorithms can suffer greatly in the presence of such distortions. We also evaluate the proposed approaches on four existing quasi-imperceptible distortions: DeepFool, Universal adversarial perturbations, $$l_2$$ , and Elastic-Net (EAD). The proposed method is able to detect both types of attacks with very high accuracy by suitably designing a classifier using the response of the hidden layers in the network. Finally, we present effective countermeasures to mitigate the impact of adversarial attacks and improve the overall robustness of DNN-based face recognition.

read more

Citations
More filters
Journal ArticleDOI

A comprehensive overview of biometric fusion

TL;DR: A comprehensive review of techniques incorporating ancillary information in the biometric recognition pipeline is presented in this paper, where the authors provide a comprehensive overview of the role of information fusion in biometrics.
Journal ArticleDOI

Adversarial Examples—Security Threats to COVID-19 Deep Learning Systems in Medical IoT Devices

TL;DR: A number of COVID-19 diagnostic methods that rely on DL algorithms with relevant adversarial examples (AEs) are tested, showing that DL models that do not consider defensive models against adversarial perturbations remain vulnerable to adversarial attacks.
Journal ArticleDOI

Improving the Reliability of Deep Neural Networks in NLP: A Review

TL;DR: Recent approaches for generating adversarial texts are summarized and a taxonomy to categorize them are proposed and a comprehensive review of their use to improve the robustness of DNNs in NLP applications is presented.
Journal ArticleDOI

Towards Transferable Adversarial Attack Against Deep Face Recognition

TL;DR: This work proposes DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models and obtain ensemble-like effects in face recognition, and shows that the proposed method can significantly enhance the transferability of existing attack methods.
Journal ArticleDOI

On the Robustness of Face Recognition Algorithms Against Attacks and Bias

TL;DR: Different ways in which the robustness of a face recognition algorithm is challenged, which can severely affect its intended working are summarized.
References
More filters
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Robust Real-Time Face Detection

TL;DR: In this paper, a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates is described. But the detection performance is limited to 15 frames per second.
Book ChapterDOI

SURF: speeded up robust features

TL;DR: A novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.
Posted Content

Distilling the Knowledge in a Neural Network

TL;DR: This work shows that it can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model and introduces a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse.
Proceedings ArticleDOI

Robust real-time face detection

TL;DR: A new image representation called the “Integral Image” is introduced which allows the features used by the detector to be computed very quickly and a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions.