scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Detecting Avocados to Zucchinis: What Have We Done, and Where Are We Going?

TL;DR: A large-scale study on the Image Net Large Scale Visual Recognition Challenge data, inspired by the recent work of Hoiem et al, shows that this dataset provides many of the same detection challenges as the PASCAL VOC.
Abstract: The growth of detection datasets and the multiple directions of object detection research provide both an unprecedented need and a great opportunity for a thorough evaluation of the current state of the field of categorical object detection. In this paper we strive to answer two key questions. First, where are we currently as a field: what have we done right, what still needs to be improved? Second, where should we be going in designing the next generation of object detectors? Inspired by the recent work of Hoiem et al. on the standard PASCAL VOC detection dataset, we perform a large-scale study on the Image Net Large Scale Visual Recognition Challenge (ILSVRC) data. First, we quantitatively demonstrate that this dataset provides many of the same detection challenges as the PASCAL VOC. Due to its scale of 1000 object categories, ILSVRC also provides an excellent test bed for understanding the performance of detectors as a function of several key properties of the object classes. We conduct a series of analyses looking at how different detection methods perform on a number of image-level and object-class-level properties such as texture, color, deformation, and clutter. We learn important lessons of the current object detection methods and propose a number of insights for designing the next generation object detectors.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

30,811 citations

Book ChapterDOI
06 Sep 2014
TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Abstract: We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.

30,462 citations


Cites methods from "Detecting Avocados to Zucchinis: Wh..."

  • ...Unlike previous datasets containing entry-level categories [29], such as “dog” or “chair,” like [28], ImageNet used the WordNet Hierarchy [30] to obtain both entry-level and fine-grained [31] categories....

    [...]

  • ...ImageNet was created to capture a large number of object categories, many of which are fine-grained....

    [...]

  • ...For instance the ImageNet dataset [1], which contains an unprecedented number of images, has recently enabled breakthroughs in both object classification and detection research [5], [6], [7]....

    [...]

  • ...Recently, a detection challenge has been created from 200 object categories using a subset of 400,000 images from ImageNet [34]....

    [...]

  • ...MS COCO contains considerably more object instances per image (7.7) as compared to ImageNet (3.0) and PASCAL (2.3)....

    [...]

Book ChapterDOI
06 Sep 2014
TL;DR: Multi-scale orderless pooling (MOP-CNN) as discussed by the authors extracts CNN activations for local patches at multiple scale levels, performs orderless VLAD pooling of these activations at each level separately, and concatenates the result.
Abstract: Deep convolutional neural networks (CNN) have shown their promise as a universal representation for recognition. However, global CNN activations lack geometric invariance, which limits their robustness for classification and matching of highly variable scenes. To improve the invariance of CNN activations without degrading their discriminative power, this paper presents a simple but effective scheme called multi-scale orderless pooling (MOP-CNN). This scheme extracts CNN activations for local patches at multiple scale levels, performs orderless VLAD pooling of these activations at each level separately, and concatenates the result. The resulting MOP-CNN representation can be used as a generic feature for either supervised or unsupervised recognition tasks, from image classification to instance-level retrieval; it consistently outperforms global CNN activations without requiring any joint training of prediction layers for a particular target dataset. In absolute terms, it achieves state-of-the-art results on the challenging SUN397 and MIT Indoor Scenes classification datasets, and competitive results on ILSVRC2012/2013 classification and INRIA Holidays retrieval datasets.

1,109 citations

Posted Content
TL;DR: In this article, the authors present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding.
Abstract: We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.

691 citations

Posted Content
TL;DR: The creation of this benchmark dataset and the advances in object recognition that have been possible as a result are described, and the state-of-the-art computer vision accuracy with human accuracy is compared.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the five years of the challenge, and propose future directions and improvements.

519 citations


Cites background or methods from "Detecting Avocados to Zucchinis: Wh..."

  • ...Appendix B and (Russakovsky et al., 2013) have additional comparisons....

    [...]

  • ...The x-axis corresponds to object properties annotated by human labelers for each object class (Russakovsky et al. 2013) and illustrated in Fig....

    [...]

  • ...Human subjects annotated each of the 1000 image classification and single-object localization object classes from ILSVRC2012-2014with these properties (Russakovsky et al. 2013)....

    [...]

  • ...The other properties were computed by asking human subjects to annotate each of the 1000 object categories (Russakovsky et al. 2013)...

    [...]

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in evaluated methods for both classification and detection are reviewed, whether the methods are statistically different, what they are learning from the images, and what the methods find easy or confuse.
Abstract: The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.

15,935 citations


"Detecting Avocados to Zucchinis: Wh..." refers background in this paper

  • ...Others have provided insight into dataset design [14, 18, 7]....

    [...]

  • ...The field of large-scale categorical object detection is rapidly growing [7, 3, 12], both by developing more robust object representations and also by collecting richer datasets for training and evaluation....

    [...]

  • ...The most in-depth analysis of generic object detection to date has been performed on the PASCAL challenge in [7] and especially in [10]....

    [...]

  • ...The commonly accepted measure of detection accuracy of an algorithm consists of two requirements [7]: (1) all instances of an object class should be correctly localized, where an object instance with a bounding box B̂ is considered correctly localized if a window B returned by the algorithm satisfies the intersection over union (IOU) measure: IOU(B̂, B) = area(B̂∩B) area(B̂∪B) ≥ 0....

    [...]

  • ..., PASCAL [7], LabelMe [15], TinyImages [19], SUN [24], and ImageNet [4]....

    [...]

01 Jan 2011
TL;DR: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images that can then be used to reliably match objects in diering images.
Abstract: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images. These features can then be used to reliably match objects in diering images. The algorithm was rst proposed by Lowe [12] and further developed to increase performance resulting in the classic paper [13] that served as foundation for SIFT which has played an important role in robotic and machine vision in the past decade.

14,708 citations


"Detecting Avocados to Zucchinis: Wh..." refers methods in this paper

  • ...It uses an image classification system with dense SIFT features and color statistics [13], a Fisher vector representation [16], and a linear SVM classifier, plus additional insights from [2, 17], combined with the deformable parts-based model (DPM) [9] which has been the dominant model for generic object detection for many years....

    [...]