scispace - formally typeset
Search or ask a question
Book ChapterDOI

Detecting symmetry and symmetric constellations of features

07 May 2006-Vol. 3952, pp 508-521
TL;DR: It is shown how symmetric pairs of features can be efficiently detected, how the symmetry bonding each pair is extracted and evaluated, and how these can be grouped into symmetric constellations that specify the dominant symmetries present in the image.
Abstract: A novel and efficient method is presented for grouping feature points on the basis of their underlying symmetry and characterising the symmetries present in an image. We show how symmetric pairs of features can be efficiently detected, how the symmetry bonding each pair is extracted and evaluated, and how these can be grouped into symmetric constellations that specify the dominant symmetries present in the image. Symmetries over all orientations and radii are considered simultaneously, and the method is able to detect local or global symmetries, locate symmetric figures in complex backgrounds, detect bilateral or rotational symmetry, and detect multiple incidences of symmetry.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The proposed affine-SIFT (ASIFT), simulates all image views obtainable by varying the two camera axis orientation parameters, namely, the latitude and the longitude angles, left over by the SIFT method, and will be mathematically proved to be fully affine invariant.
Abstract: If a physical object has a smooth or piecewise smooth boundary, its images obtained by cameras in varying positions undergo smooth apparent deformations. These deformations are locally well approximated by affine transforms of the image plane. In consequence the solid object recognition problem has often been led back to the computation of affine invariant image local features. Such invariant features could be obtained by normalization methods, but no fully affine normalization method exists for the time being. Even scale invariance is dealt with rigorously only by the scale-invariant feature transform (SIFT) method. By simulating zooms out and normalizing translation and rotation, SIFT is invariant to four out of the six parameters of an affine transform. The method proposed in this paper, affine-SIFT (ASIFT), simulates all image views obtainable by varying the two camera axis orientation parameters, namely, the latitude and the longitude angles, left over by the SIFT method. Then it covers the other four parameters by using the SIFT method itself. The resulting method will be mathematically proved to be fully affine invariant. Against any prognosis, simulating all views depending on the two camera orientation parameters is feasible with no dramatic computational load. A two-resolution scheme further reduces the ASIFT complexity to about twice that of SIFT. A new notion, the transition tilt, measuring the amount of distortion from one view to another, is introduced. While an absolute tilt from a frontal to a slanted view exceeding 6 is rare, much higher transition tilts are common when two slanted views of an object are compared (see Figure hightransitiontiltsillustration). The attainable transition tilt is measured for each affine image comparison method. The new method permits one to reliably identify features that have undergone transition tilts of large magnitude, up to 36 and higher. This fact is substantiated by many experiments which show that ASIFT significantly outperforms the state-of-the-art methods SIFT, maximally stable extremal region (MSER), Harris-affine, and Hessian-affine.

1,480 citations

Proceedings ArticleDOI
17 Jun 2007
TL;DR: An approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities, measured densely throughout the image/video, at multiple scales, while accounting for local and global geometric distortions is presented.
Abstract: We present an approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities. What is correlated across images (or across video sequences) is the internal layout of local self-similarities (up to some distortions), even though the patterns generating those local self-similarities are quite different in each of the images/videos. These internal self-similarities are efficiently captured by a compact local "self-similarity descriptor"', measured densely throughout the image/video, at multiple scales, while accounting for local and global geometric distortions. This gives rise to matching capabilities of complex visual data, including detection of objects in real cluttered images using only rough hand-sketches, handling textured objects with no clear boundaries, and detecting complex actions in cluttered video data with no prior learning. We compare our measure to commonly used image-based and video-based similarity measures, and demonstrate its applicability to object detection, retrieval, and action detection.

1,162 citations


Cites methods from "Detecting symmetry and symmetric co..."

  • ...Local self-similarities of image patterns have also been employed for the purpose of texture edge detection [25], for detecting symmetries [14], and for other applications....

    [...]

Journal ArticleDOI
01 Jul 2006
TL;DR: A new algorithm is presented that processes geometric models and efficiently discovers and extracts a compact representation of their Euclidean symmetries, which captures important high-level information about the structure of a geometric model which enables a large set of further processing operations.
Abstract: "Symmetry is a complexity-reducing concept [...]; seek it every-where." - Alan J. PerlisMany natural and man-made objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a compact representation of their Euclidean symmetries. These symmetries can be partial, approximate, or both. The method is based on matching simple local shape signatures in pairs and using these matches to accumulate evidence for symmetries in an appropriate transformation space. A clustering stage extracts potential significant symmetries of the object, followed by a verification step. Based on a statistical sampling analysis, we provide theoretical guarantees on the success rate of our algorithm. The extracted symmetry graph representation captures important high-level information about the structure of a geometric model which in turn enables a large set of further processing operations, including shape compression, segmentation, consistent editing, symmetrization, indexing for retrieval, etc.

511 citations


Cites methods from "Detecting symmetry and symmetric co..."

  • ...Recently ideas based on the Hough transform have been used by [Loy and Eklundh 2006] to detect reflective and rotational symmetries in images....

    [...]

Journal ArticleDOI
TL;DR: The goal is to provide a survey that will help researchers to better position their own work in the context of existing solutions, and to help newcomers and practitioners in computer graphics to quickly gain an overview of this vast field.
Abstract: This paper provides a comprehensive overview of urban reconstruction. While there exists a considerable body of literature, this topic is still under active research. The work reviewed in this survey stems from the following three research communities: computer graphics, computer vision and photogrammetry and remote sensing. Our goal is to provide a survey that will help researchers to better position their own work in the context of existing solutions, and to help newcomers and practitioners in computer graphics to quickly gain an overview of this vast field. Further, we would like to bring the mentioned research communities to even more interdisciplinary work, since the reconstruction problem itself is by far not solved.

445 citations

Proceedings ArticleDOI
03 Nov 2014
TL;DR: Experiments demonstrate the superiority of PAEF for affective image classification and regression (with about 5% improvement on classification accuracy and 0.2 decrease in mean squared error), as compared to the state-of-the-art approaches.
Abstract: Emotions can be evoked in humans by images. Most previous works on image emotion analysis mainly used the elements-of-art-based low-level visual features. However, these features are vulnerable and not invariant to the different arrangements of elements. In this paper, we investigate the concept of principles-of-art and its influence on image emotions. Principles-of-art-based emotion features (PAEF) are extracted to classify and score image emotions for understanding the relationship between artistic principles and emotions. PAEF are the unified combination of representation features derived from different principles, including balance, emphasis, harmony, variety, gradation, and movement. Experiments on the International Affective Picture System (IAPS), a set of artistic photography and a set of peer rated abstract paintings, demonstrate the superiority of PAEF for affective image classification and regression (with about 5% improvement on classification accuracy and 0.2 decrease in mean squared error), as compared to the state-of-the-art approaches. We then utilize PAEF to analyze the emotions of master paintings, with promising results.

271 citations


Cites background or methods from "Detecting symmetry and symmetric co..."

  • ...To detect bilateral and rotational symmetry, we use the symmetry detection method in [22], which is based on matching symmetrical pairs of feature points....

    [...]

  • ...Since the asymmetrical balance is difficult to measure mathematically, in this paper we only consider symmetry, including bilateral symmetry, rotational symmetry [22] and radial symmetry [23, 28]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Book
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations

Journal ArticleDOI
TL;DR: It is observed that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best and Moments and steerable filters show the best performance among the low dimensional descriptors.
Abstract: In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by the Harris-Affine detector [Mikolajczyk, K and Schmid, C, 2004]. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more appropriate and how their performance depends on the interest region detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the detector. Our evaluation uses as criterion recall with respect to precision and is carried out for different image transformations. We compare shape context [Belongie, S, et al., April 2002], steerable filters [Freeman, W and Adelson, E, Setp. 1991], PCA-SIFT [Ke, Y and Sukthankar, R, 2004], differential invariants [Koenderink, J and van Doorn, A, 1987], spin images [Lazebnik, S, et al., 2003], SIFT [Lowe, D. G., 1999], complex filters [Schaffalitzky, F and Zisserman, A, 2002], moment invariants [Van Gool, L, et al., 1996], and cross-correlation for different types of interest regions. We also propose an extension of the SIFT descriptor and show that it outperforms the original method. Furthermore, we observe that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best. Moments and steerable filters show the best performance among the low dimensional descriptors.

7,057 citations

Proceedings ArticleDOI
18 Jun 2003
TL;DR: It is observed that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best and Moments and steerable filters show the best performance among the low dimensional descriptors.
Abstract: In this paper we compare the performance of interest point descriptors. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their performance depends on the interest point detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the point detector. Our evaluation uses as criterion detection rate with respect to false positive rate and is carried out for different image transformations. We compare SIFT descriptors (Lowe, 1999), steerable filters (Freeman and Adelson, 1991), differential invariants (Koenderink ad van Doorn, 1987), complex filters (Schaffalitzky and Zisserman, 2002), moment invariants (Van Gool et al., 1996) and cross-correlation for different types of interest points. In this evaluation, we observe that the ranking of the descriptors does not depend on the point detector and that SIFT descriptors perform best. Steerable filters come second ; they can be considered a good choice given the low dimensionality.

3,362 citations