scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Development and applications of CRISPR-Cas9 for genome engineering.

05 Jun 2014-Cell (Elsevier)-Vol. 157, Iss: 6, pp 1262-1278
TL;DR: In this paper, the authors describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions, and highlight challenges and future directions.
About: This article is published in Cell.The article was published on 2014-06-05 and is currently open access. It has received 4361 citations till now. The article focuses on the topics: Genome editing & Cas9.
Citations
More filters
Journal ArticleDOI
28 Nov 2014-Science
TL;DR: The power of the CRISPR-Cas9 technology to systematically analyze gene functions in mammalian cells, study genomic rearrangements and the progression of cancers or other diseases, and potentially correct genetic mutations responsible for inherited disorders is illustrated.
Abstract: The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics.

4,774 citations

Journal ArticleDOI
22 Oct 2015-Cell
TL;DR: In this paper, the authors characterized Cpf1, a putative class 2 CRISPR effector, which is a single RNA-guided endonuclease lacking tracrRNA and utilizes a T-rich protospacer-adjacent motif.

3,436 citations

Journal ArticleDOI
TL;DR: Advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.
Abstract: Circular RNAs (circRNAs) are covalently closed, endogenous biomolecules in eukaryotes with tissue-specific and cell-specific expression patterns, whose biogenesis is regulated by specific cis-acting elements and trans-acting factors. Some circRNAs are abundant and evolutionarily conserved, and many circRNAs exert important biological functions by acting as microRNA or protein inhibitors ('sponges'), by regulating protein function or by being translated themselves. Furthermore, circRNAs have been implicated in diseases such as diabetes mellitus, neurological disorders, cardiovascular diseases and cancer. Although the circular nature of these transcripts makes their detection, quantification and functional characterization challenging, recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.

2,372 citations

Journal ArticleDOI
29 Jan 2015-Nature
TL;DR: Structural-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci is described and the potential of Cas9-based activators as a powerful genetic perturbation technology is demonstrated.
Abstract: Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.

2,186 citations

Journal ArticleDOI
28 Jan 2016-Nature
TL;DR: With its exceptional precision, SpCas9-HF1 provides an alternative to wild-type Sp Cas9 for research and therapeutic applications and suggests a general strategy for optimizing genome-wide specificities of other CRISPR-RNA-guided nucleases.
Abstract: CRISPR-Cas9 nucleases are widely used for genome editing but can induce unwanted off-target mutations. Existing strategies for reducing genome-wide off-target effects of the widely used Streptococcus pyogenes Cas9 (SpCas9) are imperfect, possessing only partial or unproven efficacies and other limitations that constrain their use. Here we describe SpCas9-HF1, a high-fidelity variant harbouring alterations designed to reduce non-specific DNA contacts. SpCas9-HF1 retains on-target activities comparable to wild-type SpCas9 with >85% of single-guide RNAs (sgRNAs) tested in human cells. Notably, with sgRNAs targeted to standard non-repetitive sequences, SpCas9-HF1 rendered all or nearly all off-target events undetectable by genome-wide break capture and targeted sequencing methods. Even for atypical, repetitive target sites, the vast majority of off-target mutations induced by wild-type SpCas9 were not detected with SpCas9-HF1. With its exceptional precision, SpCas9-HF1 provides an alternative to wild-type SpCas9 for research and therapeutic applications. More broadly, our results suggest a general strategy for optimizing genome-wide specificities of other CRISPR-RNA-guided nucleases.

2,031 citations

References
More filters
Journal ArticleDOI
17 Aug 2012-Science
TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.

12,865 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Abstract: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

12,265 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II bacterial CRISPR system is engineer to function with custom guide RNA (gRNA) in human cells to establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
Abstract: Bacteria and archaea have evolved adaptive immune defenses, termed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems, that use short RNA to direct degradation of foreign nucleic acids. Here, we engineer the type II bacterial CRISPR system to function with custom guide RNA (gRNA) in human cells. For the endogenous AAVS1 locus, we obtained targeting rates of 10 to 25% in 293T cells, 13 to 8% in K562 cells, and 2 to 4% in induced pluripotent stem cells. We show that this process relies on CRISPR components; is sequence-specific; and, upon simultaneous introduction of multiple gRNAs, can effect multiplex editing of target loci. We also compute a genome-wide resource of ~190 K unique gRNAs targeting ~40.5% of human exons. Our results establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.

8,197 citations

Journal ArticleDOI
23 Mar 2007-Science
TL;DR: It is found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences, and CRISPR provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.

5,045 citations

Journal ArticleDOI
28 Feb 2013-Cell
TL;DR: This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale and can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects.

4,282 citations

Related Papers (5)