scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Development and Mechanical Characterisation of Al6061-Al2O3-Graphene Hybrid Metal Matrix Composites

TL;DR: In this article, the fabrication and mechanical performance of AA6061 matrix composites fortified with Al2O3 (alumina) and graphene particulates was examined using optical analyser and SEM equipment.
Abstract: MMC based on aluminium (Al) were produced for light-weight applications especially in aviation and automobile areas. Present paper deals with the fabrication and mechanical performance of AA6061 matrix composites fortified with Al2O3 (alumina) and graphene particulates. Fluid metallurgy method namely stir casting route was employed for fabricating the hybrid composites. Al2O3p and graphene powder are mixed in different weight fractions in which graphene (1 wt. %) particle reinforcement is held consistent and Al2O3 reinforcement is differed freely with 5, 10 and 15 wt. %. Using optical analyser and SEM equipment, microstructural examination is carried out and the result reveals that the graphene and Al2O3 particles prevalently are homogeneously appropriated on the grain limits of Al matrix and Al2O3 particles are disseminated between graphene in the as-cast AA6061 MMC’s. Detailed analysis on investigation of the microstructure and mechanical aspects of Al6061-graphene-Al2O3p composites is presented by following ASTM guidelines; results uncovered that with increment in reinforcement particles, there is an enhancement in the hardness, ultimate strength, yield strength and a decline in the elongation values was however noticed when contrasted with Al6061 alloy. Fractography investigation revealed dimples in unreinforced alloy and the composite.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the effect of hybrid reinforcements on the mechanical properties of Cu composites having graphene as one of the reinforcements was comprehensively reviewed and the contribution of these reinforced nanomaterials composition and their dispersion in the pure Cu matrices were also explained in detail.
Abstract: Copper (Cu) composites hybridized with nano-sized reinforcing material are gathering attraction in such fields as automobile, aerospace, and power transmission due to their higher strength. Unlike conventional reinforcing materials, extraordinary mechanical properties and high electrical and thermal conductivity make nanomaterials highly useful reinforcement materials to improve the properties of pristine metals. Over the last two decades, several studies have been conducted to determine the effect of distinctive 2D nanomaterials, such as silicon carbide, aluminium oxide, copper nanotube, and graphene as reinforcement on properties of metal matrices. This study comprehensively reviews the effect of hybrid reinforcements on the mechanical properties of Cu composites having graphene as one of the reinforcements. Also, the contribution of these reinforced nanomaterials composition and their dispersion in the pure Cu matrices have also been explained in detail. In comparison with Cu composites fabricated with a single 2D reinforcement material, composites incorporating hybrid nano reinforcement, exhibit better mechanical behaviour. Additionally, the improvement in mechanical strength would enhance their capability to withstand altering thermal and surrounding environmental conditions.

21 citations

Journal ArticleDOI
TL;DR: In this paper , the influence of graphene nanoplates on microstructure and mechanical properties of the 6061 aluminum alloy were investigated by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy, tensile and hardness testing analysis methods.
Abstract: In this research, graphene/Al6061 aluminum matrix nanocomposites were fabricated by stir casting, and the influence of graphene nanoplates on microstructure and mechanical properties of the 6061 aluminum alloy were investigated by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy, tensile and hardness testing analysis methods. The major limitation in the utilization of 6061 aluminum alloy in heavy stress applications such as airplane fuselages, wings, internal panels, and luxury vehicles chassis is low strength and hardness. This deficiency of 6061 aluminum alloy was tackled by successful reinforcement of graphene nanoplates in 2, 4, 6, 8 and 10 wt.%, using the stir casting process. The FESEM micrographs showed that the graphene nanoplates were uniformly distributed in the 6061-aluminum matrix alloy and tensile strength, hardness, and yield strength enhanced remarkably as compared with unreinforced 6061 aluminum alloy. The as-cast tensile strength, hardness, and yield strength of the graphene/Al6061 nanocomposites were improved by 127%, 158%, and 402%, respectively, compared with the unreinforced Al6061 alloy. It is concluded that the nano thickness of graphene, reinforcement quantity, and manufacturing process are the major factors for the enhancement of microstructure and mechanical properties of graphene/Al6061 nanocomposites.

9 citations

Journal ArticleDOI
TL;DR: In this article , the microstructures of castings are examined using computer aided image analyzer and the results show that uniform dispersion of TiB2 and B4C reinforcement phases in Al LM13 alloy.
Abstract: Aluminium LM13 alloy based hybrid particulate composites have been processed by adding boron carbide (B4C) and titanium diboride (TiB2) particles. The wt% of titanium diboride (TiB2) is varied as 0, 3, 6, 9, 12, 15 and a constant 3 wt% of boron carbide is used to prepare the composites. Stir cast route is used to fabricate the composites. The microstructures of castings are examined using computer aided image analyzer. Vicker hardness, yield strength, ultimate tensile strength and energy absorbed by the composites are examined and reported. The results show that uniform dispersion of TiB2 and B4C reinforcement phases in Al LM13 alloy. Micro hardness of composites enhanced upto 36.6% when compared to Al alloy reinforced with 3 wt% of B4C particles. Ultimate tensile strength of Al alloy is improved from 151 MPa to 192 MPa by reinforcing 15 wt% of titanium diboride particles. LM13 aluminium alloy hybrid particulate composites offers superior vicker hardness, yield strength, utlimate tensile strength and impact strength over LM13 aluminium alloy based single particle reinforced composites.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Abstract: We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range ∼(4.84 ± 0.44) × 103 to (5.30 ± 0.48) × 103 W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.

11,878 citations

Book
28 Sep 2004
TL;DR: Mechanical Alloying (MA) is a solid-state powder processng technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill as mentioned in this paper.
Abstract: Mechanical alloying (MA) is a solid-state powder processng technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill. Originally developed to produce oxide-dispersion strengthened (ODS) nickel- and iron-base superalloys for applications in the aerospace industry, MA has now been shown to be capable of synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from blended elemental or prealloyed powders. The non-equilibrium phases synthesized include supersaturated solid solutions, metastable crystalline and quasicrystalline phases, nanostructures, and amorphous alloys. Recent advances in these areas and also on disordering of ordered intermetallics and mechanochemical synthesis of materials have been critically reviewed after discussing the process and process variables involved in MA. The often vexing problem of powder contamination has been analyzed and methods have been suggested to avoid/minimize it. The present understanding of the modeling of the MA process has also been discussed. The present and potential applications of MA are described. Wherever possible, comparisons have been made on the product phases obtained by MA with those of rapid solidification processing, another non-equilibrium processing technique.

3,773 citations

Proceedings ArticleDOI
01 Jan 2015
TL;DR: A brief review of the mechanical alloying questions focusing on the possible processes and apparatuses (mills) can be found in this article, with a focus on the possibility of using a mill.
Abstract: The search for new and advanced materials is the major preoccupation of metallurgists, ceramicists, and material scientists for the past several centuries. Significant improvements in mechanical, chemical, and physical properties have been achieved by alloying and through chemical modification and by subjection the materials to conventional thermal, mechanical, and thermo mechanical processing methods. Present paper deals with a brief review of the mechanical alloying questions focusing on the possible processes and apparatuses (mills).

1,837 citations

Journal ArticleDOI
TL;DR: In this article, aluminum composites reinforced with graphene nanosheets (GNSs) were fabricated for the first time through a feasible methodology based on flake powder metallurgy.

729 citations

Journal ArticleDOI
TL;DR: In this article, the composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion and the mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry.
Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene–aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

492 citations